These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 16547073)

  • 61. Template based protein structure modeling by global optimization in CASP11.
    Joo K; Joung I; Lee SY; Kim JY; Cheng Q; Manavalan B; Joung JY; Heo S; Lee J; Nam M; Lee IH; Lee SJ; Lee J
    Proteins; 2016 Sep; 84 Suppl 1():221-32. PubMed ID: 26329522
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Segmentation-Based Method to Extract Structural and Evolutionary Features for Protein Fold Recognition.
    Dehzangi A; Paliwal K; Lyons J; Sharma A; Sattar A
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(3):510-9. PubMed ID: 26356019
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A protein structural classes prediction method based on predicted secondary structure and PSI-BLAST profile.
    Ding S; Li Y; Shi Z; Yan S
    Biochimie; 2014 Feb; 97():60-5. PubMed ID: 24067326
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Improving protein fold recognition by random forest.
    Jo T; Cheng J
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S14. PubMed ID: 25350499
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments.
    Zhou H; Zhou Y
    Proteins; 2005 Feb; 58(2):321-8. PubMed ID: 15523666
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bioinformatics methods to predict protein structure and function. A practical approach.
    Edwards YJ; Cottage A
    Mol Biotechnol; 2003 Feb; 23(2):139-66. PubMed ID: 12632698
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fold-LTR-TCP: protein fold recognition based on triadic closure principle.
    Liu B; Zhu Y; Yan K
    Brief Bioinform; 2020 Dec; 21(6):2185-2193. PubMed ID: 31813954
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fold recognition without folds.
    Koretke KK; Russell RB; Lupas AN
    Protein Sci; 2002 Jun; 11(6):1575-9. PubMed ID: 12021456
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optimization of profile-to-profile alignment parameters for one-dimensional threading.
    Gniewek P; Kolinski A; Gront D
    J Comput Biol; 2012 Jul; 19(7):879-86. PubMed ID: 22731622
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel predictor for protein structural class based on integrated information of the secondary structure sequence.
    Zhang L; Zhao X; Kong L; Liu S
    Biochimie; 2014 Aug; 103():131-6. PubMed ID: 24859536
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A novel approach to structural alignment using realistic structural and environmental information.
    Chen Y; Crippen GM
    Protein Sci; 2005 Dec; 14(12):2935-46. PubMed ID: 16260755
    [TBL] [Abstract][Full Text] [Related]  

  • 74. DeepSF: deep convolutional neural network for mapping protein sequences to folds.
    Hou J; Adhikari B; Cheng J
    Bioinformatics; 2018 Apr; 34(8):1295-1303. PubMed ID: 29228193
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evidence theoretic protein fold classification based on the concept of hyperfold.
    Kavousi K; Sadeghi M; Moshiri B; Araabi BN; Moosavi-Movahedi AA
    Math Biosci; 2012 Dec; 240(2):148-60. PubMed ID: 22824139
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 77. PROSPECT II: protein structure prediction program for genome-scale applications.
    Kim D; Xu D; Guo JT; Ellrott K; Xu Y
    Protein Eng; 2003 Sep; 16(9):641-50. PubMed ID: 14560049
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protein fold classification with genetic algorithms and feature selection.
    Chen P; Liu C; Burge L; Mahmood M; Southerland W; Gloster C
    J Bioinform Comput Biol; 2009 Oct; 7(5):773-88. PubMed ID: 19785045
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Integrating multi-attribute similarity networks for robust representation of the protein space.
    Camoglu O; Can T; Singh AK
    Bioinformatics; 2006 Jul; 22(13):1585-92. PubMed ID: 16595556
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A global machine learning based scoring function for protein structure prediction.
    Faraggi E; Kloczkowski A
    Proteins; 2014 May; 82(5):752-9. PubMed ID: 24264942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.