BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 16547291)

  • 1. Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956).
    Tattersall GJ; Eterovick PC; de Andrade DV
    J Exp Biol; 2006 Apr; 209(Pt 7):1185-96. PubMed ID: 16547291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Body temperature and resistance to evaporative water loss in tropical Australian frogs.
    Tracy CR; Christian KA; Betts G; Tracy CR
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):102-8. PubMed ID: 16829148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferred temperature correlates with evaporative water loss in hylid frogs from northern Australia.
    Tracy CR; Christian KA
    Physiol Biochem Zool; 2005; 78(5):839-46. PubMed ID: 16082612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anuran skin and basking behavior: The case of the treefrog Bokermannohyla alvarengai (Bokermann, 1956).
    Centeno FC; Antoniazzi MM; Andrade DV; Kodama RT; Sciani JM; Pimenta DC; Jared C
    J Morphol; 2015 Oct; 276(10):1172-82. PubMed ID: 26129989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body wiping behaviors associated with cutaneous lipids in hylid tree frogs of Florida.
    Barbeau TR; Lillywhite HB
    J Exp Biol; 2005 Jun; 208(Pt 11):2147-56. PubMed ID: 15914658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wiping behavior, skin resistance, and the metabolic response to dehydration in the arboreal frog Phyllomedusa hypochondrialis.
    Gomez NA; Acosta M; Zaidan F; Lillywhite HB
    Physiol Biochem Zool; 2006; 79(6):1058-68. PubMed ID: 17041871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using pairs of physiological models to estimate temporal variation in amphibian body temperature.
    Roznik EA; Alford RA
    J Therm Biol; 2014 Oct; 45():22-9. PubMed ID: 25436947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of cutaneous evaporative water loss in frogs demonstrates correlation with ecological habits.
    Young JE; Christian KA; Donnellan S; Tracy CR; Parry D
    Physiol Biochem Zool; 2005; 78(5):847-56. PubMed ID: 16052451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body temperature, thermoregulatory behaviour and pelt characteristics of three colour morphs of springbok (Antidorcas marsupialis).
    Hetem RS; de Witt BA; Fick LG; Fuller A; Kerley GI; Meyer LC; Mitchell D; Maloney SK
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Mar; 152(3):379-88. PubMed ID: 19056508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic, ventilatory and hygric physiology of the chuditch (Dasyurus geoffroii; Marsupialia, Dasyuridae).
    Schmidt S; Withers PC; Cooper CE
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):92-7. PubMed ID: 19447187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cocoon of the fossorial frog Cyclorana australis functions primarily as a barrier to water exchange with the substrate.
    Reynolds SJ; Christian KA; Tracy CR
    Physiol Biochem Zool; 2010; 83(5):877-84. PubMed ID: 20687829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basking behaviour in relation to energy use and food availability in one of the smallest marsupials.
    Warnecke L; Schleucher E; Geiser F
    Physiol Behav; 2010 Oct; 101(3):389-93. PubMed ID: 20637789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condensation onto the skin as a means for water gain by tree frogs in tropical Australia.
    Tracy CR; Laurence N; Christian KA
    Am Nat; 2011 Oct; 178(4):553-8. PubMed ID: 21956032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic costs and thermoregulation in northern fur seal (Callorhinus ursinus) pups: the importance of behavioral strategies for thermal balance in furred marine mammals.
    Liwanag HE
    Physiol Biochem Zool; 2010; 83(6):898-910. PubMed ID: 20950169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cricket frogs maintain body hydration and temperature near levels allowing maximum jump performance.
    Walvoord ME
    Physiol Biochem Zool; 2003; 76(6):825-35. PubMed ID: 14988797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic compensation and behavioral thermoregulation of subtropical rhacophorid (Polypedates megacephalus) tadpoles in container habitats.
    Wu HJ; Yen CF; Kam YC
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):101-6. PubMed ID: 17197216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ozone on evaporative water loss and thermoregulatory behavior of marine toads (Bufo marinus).
    Dohm MR; Mautz WJ; Looby PG; Gellert KS; Andrade JA
    Environ Res; 2001 Jul; 86(3):274-86. PubMed ID: 11453678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential application of cold and sodium lauryl sulphate decreases irritation and barrier disruption in vivo in humans.
    Fluhr JW; Bornkessel A; Akengin A; Fuchs S; Norgauer J; Kleesz P; Grieshaber R; Elsner P
    Br J Dermatol; 2005 Apr; 152(4):702-8. PubMed ID: 15840102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloacal evaporation: an important and previously undescribed mechanism for avian thermoregulation.
    Hoffman TC; Walsberg GE; DeNardo DF
    J Exp Biol; 2007 Mar; 210(Pt 5):741-9. PubMed ID: 17297135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat transfer to deep tissue: the effect of body fat and heating modality.
    Petrofsky JS; Laymon M
    J Med Eng Technol; 2009; 33(5):337-48. PubMed ID: 19440919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.