BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 16547481)

  • 1. Trafficking in persulfides: delivering sulfur in biosynthetic pathways.
    Mueller EG
    Nat Chem Biol; 2006 Apr; 2(4):185-94. PubMed ID: 16547481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes.
    Goldsmith-Fischman S; Kuzin A; Edstrom WC; Benach J; Shastry R; Xiao R; Acton TB; Honig B; Montelione GT; Hunt JF
    J Mol Biol; 2004 Nov; 344(2):549-65. PubMed ID: 15522304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structures and backbone dynamics of Escherichia coli rhodanese PspE in its sulfur-free and persulfide-intermediate forms: implications for the catalytic mechanism of rhodanese.
    Li H; Yang F; Kang X; Xia B; Jin C
    Biochemistry; 2008 Apr; 47(15):4377-85. PubMed ID: 18355042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast conformational exchange between the sulfur-free and persulfide-bound rhodanese domain of E. coli YgaP.
    Wang W; Zhou P; He Y; Yu L; Xiong Y; Tian C; Wu F
    Biochem Biophys Res Commun; 2014 Sep; 452(3):817-21. PubMed ID: 25204500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cys-328 of IscS and Cys-63 of IscU are the sites of disulfide bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron-sulfur cluster assembly.
    Kato S; Mihara H; Kurihara T; Takahashi Y; Tokumoto U; Yoshimura T; Esaki N
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5948-52. PubMed ID: 11972033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orchestrating sulfur incorporation into RNA.
    Lauhon CT
    Nat Chem Biol; 2006 Apr; 2(4):182-3. PubMed ID: 16547479
    [No Abstract]   [Full Text] [Related]  

  • 7. The cysteine-desulfurase IscS promotes the production of the rhodanese RhdA in the persulfurated form.
    Forlani F; Cereda A; Freuer A; Nimtz M; Leimkühler S; Pagani S
    FEBS Lett; 2005 Dec; 579(30):6786-90. PubMed ID: 16310786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.
    Black KA; Dos Santos PC
    Biochim Biophys Acta; 2015 Jun; 1853(6):1470-80. PubMed ID: 25447671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA.
    Mueller EG; Palenchar PM; Buck CJ
    J Biol Chem; 2001 Sep; 276(36):33588-95. PubMed ID: 11443125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common themes and variations in the rhodanese superfamily.
    Cipollone R; Ascenzi P; Visca P
    IUBMB Life; 2007 Feb; 59(2):51-9. PubMed ID: 17454295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors.
    Hidese R; Mihara H; Esaki N
    Appl Microbiol Biotechnol; 2011 Jul; 91(1):47-61. PubMed ID: 21603932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry.
    Matthies A; Nimtz M; Leimkühler S
    Biochemistry; 2005 May; 44(21):7912-20. PubMed ID: 15910006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate.
    Palenchar PM; Buck CJ; Cheng H; Larson TJ; Mueller EG
    J Biol Chem; 2000 Mar; 275(12):8283-6. PubMed ID: 10722656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SUF iron-sulfur cluster biosynthetic machinery: sulfur transfer from the SUFS-SUFE complex to SUFA.
    Sendra M; Ollagnier de Choudens S; Lascoux D; Sanakis Y; Fontecave M
    FEBS Lett; 2007 Apr; 581(7):1362-8. PubMed ID: 17350000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an NADH-dependent persulfide reductase from Shewanella loihica PV-4: implications for the mechanism of sulfur respiration via FAD-dependent enzymes.
    Warner MD; Lukose V; Lee KH; Lopez K; H Sazinsky M; Crane EJ
    Biochemistry; 2011 Jan; 50(2):194-206. PubMed ID: 21090815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of 4-thiouridine in tRNA in the methanogenic archaeon Methanococcus maripaludis.
    Liu Y; Zhu X; Nakamura A; Orlando R; Söll D; Whitman WB
    J Biol Chem; 2012 Oct; 287(44):36683-92. PubMed ID: 22904325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli biotin synthase produces selenobiotin. Further evidence of the involvement of the [2Fe-2S]2+ cluster in the sulfur insertion step.
    Tse Sum Bui B; Mattioli TA; Florentin D; Bolbach G; Marquet A
    Biochemistry; 2006 Mar; 45(11):3824-34. PubMed ID: 16533066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo method for characterization of protein interactions within sulfur trafficking systems of E. coli.
    Bolstad HM; Wood MJ
    J Proteome Res; 2010 Dec; 9(12):6740-51. PubMed ID: 20936830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular recognition between Azotobacter vinelandii rhodanese and a sulfur acceptor protein.
    Cereda A; Forlani F; Iametti S; Bernhardt R; Ferranti P; Picariello G; Pagani S; Bonomi F
    Biol Chem; 2003; 384(10-11):1473-81. PubMed ID: 14669990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive genomic analysis of sulfur-relay pathway genes.
    Kotera M; Bayashi T; Hattori M; Tokimatsu T; Goto S; Mihara H; Kanehisa M
    Genome Inform; 2010; 24():104-15. PubMed ID: 22081593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.