These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16547642)

  • 1. What process is glycolytic stoichiometry optimal for?
    del Valle AE; Aledo JC
    J Mol Evol; 2006 Apr; 62(4):488-95. PubMed ID: 16547642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal stoichiometric designs of ATP-producing systems as determined by an evolutionary algorithm.
    Stephani A; Nuño JC; Heinrich R
    J Theor Biol; 1999 Jul; 199(1):45-61. PubMed ID: 10419759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems.
    Ebenhöh O; Heinrich R
    Bull Math Biol; 2001 Jan; 63(1):21-55. PubMed ID: 11146883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints.
    Heinrich R; Montero F; Klipp E; Waddell TG; Meléndez-Hevia E
    Eur J Biochem; 1997 Jan; 243(1-2):191-201. PubMed ID: 9030739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical approaches to the evolutionary optimization of glycolysis--chemical analysis.
    Meléndez-Hevia E; Waddell TG; Heinrich R; Montero F
    Eur J Biochem; 1997 Mar; 244(2):527-43. PubMed ID: 9119021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems.
    Stephani A; Heinrich R
    Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the thermodynamic theory of optimal ATP stoichiometries by analysis of various ATP-producing metabolic pathways.
    Werner S; Diekert G; Schuster S
    J Mol Evol; 2010 Dec; 71(5-6):346-55. PubMed ID: 20922363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic strategy as a tradeoff between energy yield and protein cost.
    Flamholz A; Noor E; Bar-Even A; Liebermeister W; Milo R
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):10039-44. PubMed ID: 23630264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to keep glycolytic metabolite concentrations constant when ATP/ADP and NADH/NAD+ change.
    Liguzinski P; Korzeniewski B
    Syst Biol (Stevenage); 2006 Sep; 153(5):332-4. PubMed ID: 16986310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production.
    Schuster S; Boley D; Möller P; Stark H; Kaleta C
    Biochem Soc Trans; 2015 Dec; 43(6):1187-94. PubMed ID: 26614659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural design of glycolysis: an evolutionary approach.
    Heinrich R; Meléndez-Hevia E; Montero F; Nuño JC; Stephani A; Waddell TG
    Biochem Soc Trans; 1999 Feb; 27(2):294-8. PubMed ID: 10093751
    [No Abstract]   [Full Text] [Related]  

  • 12. Glycolytic oscillations in a model of a lactic acid bacterium metabolism.
    Levering J; Kummer U; Becker K; Sahle S
    Biophys Chem; 2013 Feb; 172():53-60. PubMed ID: 23357412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis.
    Kim DM; Swartz JR
    Biotechnol Bioeng; 2001 Aug; 74(4):309-16. PubMed ID: 11410855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated energy and flux balance based multiobjective framework for large-scale metabolic networks.
    Nagrath D; Avila-Elchiver M; Berthiaume F; Tilles AW; Messac A; Yarmush ML
    Ann Biomed Eng; 2007 Jun; 35(6):863-85. PubMed ID: 17393337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.
    Lanza IR; Befroy DE; Kent-Braun JA
    J Appl Physiol (1985); 2005 Nov; 99(5):1736-44. PubMed ID: 16002769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of energy coupling by determination of the Onsager phenomenological coefficients for a 3×3 system of coupled chemical reactions and transport in ATP synthesis and its mechanistic implications.
    Nath S
    Biosystems; 2024 Jun; 240():105228. PubMed ID: 38735525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production.
    Funes JM; Quintero M; Henderson S; Martinez D; Qureshi U; Westwood C; Clements MO; Bourboulia D; Pedley RB; Moncada S; Boshoff C
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6223-8. PubMed ID: 17384149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection for rapid uptake of scarce or fluctuating resource explains vulnerability of glycolysis to imbalance.
    Janulevicius A; van Doorn GS
    PLoS Comput Biol; 2021 Jan; 17(1):e1008547. PubMed ID: 33465070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional recovery of post-ischemic myocardium requires glycolysis during early reperfusion.
    Jeremy RW; Ambrosio G; Pike MM; Jacobus WE; Becker LC
    J Mol Cell Cardiol; 1993 Mar; 25(3):261-76. PubMed ID: 8510169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.