These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16547644)

  • 21. The HWE histidine kinases, a new family of bacterial two-component sensor kinases with potentially diverse roles in environmental signaling.
    Karniol B; Vierstra RD
    J Bacteriol; 2004 Jan; 186(2):445-53. PubMed ID: 14702314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. P2CS: updates of the prokaryotic two-component systems database.
    Ortet P; Whitworth DE; Santaella C; Achouak W; Barakat M
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D536-41. PubMed ID: 25324303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whole-genome analysis of two-component signal transduction genes in fungal pathogens.
    Catlett NL; Yoder OC; Turgeon BG
    Eukaryot Cell; 2003 Dec; 2(6):1151-61. PubMed ID: 14665450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of response regulators based on their surface properties.
    Kojetin DJ; Sullivan DM; Thompson RJ; Cavanagh J
    Methods Enzymol; 2007; 422():141-69. PubMed ID: 17628138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative genomic and phylogenetic analyses reveal the evolution of the core two-component signal transduction systems in enterobacteria.
    Qi M; Sun FJ; Caetano-Anollés G; Zhao Y
    J Mol Evol; 2010 Feb; 70(2):167-80. PubMed ID: 20049425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of two-component signal transduction system in two streptomycete genomes.
    Wei W; Wang W; Cao Z; Yu H; Wang X; Zhao J; Tan H; Xu H; Jiang W; Li Y
    Acta Biochim Biophys Sin (Shanghai); 2007 May; 39(5):317-25. PubMed ID: 17492128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae.
    Zúñiga M; Gómez-Escoín CL; González-Candelas F
    BMC Evol Biol; 2011 Feb; 11():34. PubMed ID: 21284862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developing a synthetic signal transduction system in plants.
    Morey KJ; Antunes MS; Albrecht KD; Bowen TA; Troupe JF; Havens KL; Medford JI
    Methods Enzymol; 2011; 497():581-602. PubMed ID: 21601104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor.
    Wang W; Shu D; Chen L; Jiang W; Lu Y
    FEMS Microbiol Lett; 2009 May; 294(2):150-6. PubMed ID: 19341396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How important is the phosphatase activity of sensor kinases?
    Kenney LJ
    Curr Opin Microbiol; 2010 Apr; 13(2):168-76. PubMed ID: 20223700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rewiring the specificity of two-component signal transduction systems.
    Skerker JM; Perchuk BS; Siryaporn A; Lubin EA; Ashenberg O; Goulian M; Laub MT
    Cell; 2008 Jun; 133(6):1043-54. PubMed ID: 18555780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of two-component signal transduction.
    Koretke KK; Lupas AN; Warren PV; Rosenberg M; Brown JR
    Mol Biol Evol; 2000 Dec; 17(12):1956-70. PubMed ID: 11110912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role in cell permeability of an essential two-component system in Staphylococcus aureus.
    Martin PK; Li T; Sun D; Biek DP; Schmid MB
    J Bacteriol; 1999 Jun; 181(12):3666-73. PubMed ID: 10368139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MASE1 and MASE2: two novel integral membrane sensory domains.
    Nikolskaya AN; Mulkidjanian AY; Beech IB; Galperin MY
    J Mol Microbiol Biotechnol; 2003; 5(1):11-6. PubMed ID: 12673057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion.
    Clark ME; He Q; He Z; Huang KH; Alm EJ; Wan XF; Hazen TC; Arkin AP; Wall JD; Zhou JZ; Fields MW
    Appl Environ Microbiol; 2006 Aug; 72(8):5578-88. PubMed ID: 16885312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sub-classification of response regulators using the surface characteristics of their receiver domains.
    Kojetin DJ; Thompson RJ; Cavanagh J
    FEBS Lett; 2003 Nov; 554(3):231-6. PubMed ID: 14623071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of two component signaling response regulators in acid tolerance of Streptococcus mutans.
    Kawada-Matsuo M; Shibata Y; Yamashita Y
    Oral Microbiol Immunol; 2009 Apr; 24(2):173-6. PubMed ID: 19239646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains.
    Rogov VV; Rogova NY; Bernhard F; Koglin A; Löhr F; Dötsch V
    J Mol Biol; 2006 Nov; 364(1):68-79. PubMed ID: 17005198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissection of the functional and structural domains of phosphorelay histidine kinase A of Bacillus subtilis.
    Wang L; Fabret C; Kanamaru K; Stephenson K; Dartois V; Perego M; Hoch JA
    J Bacteriol; 2001 May; 183(9):2795-802. PubMed ID: 11292798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.