These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 1654778)
1. An electron paramagnetic resonance study of the interactions between the adriamycin semiquinone, hydrogen peroxide, iron-chelators, and radical scavengers. Kalyanaraman B; Morehouse KM; Mason RP Arch Biochem Biophys; 1991 Apr; 286(1):164-70. PubMed ID: 1654778 [TBL] [Abstract][Full Text] [Related]
2. Free radical production from normal and adriamycin-treated rat cardiac sarcosomes. Thornalley PJ; Dodd NJ Biochem Pharmacol; 1985 Mar; 34(5):669-74. PubMed ID: 2983734 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase. Britigan BE; Pou S; Rosen GM; Lilleg DM; Buettner GR J Biol Chem; 1990 Oct; 265(29):17533-8. PubMed ID: 2170383 [TBL] [Abstract][Full Text] [Related]
4. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals. Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296 [TBL] [Abstract][Full Text] [Related]
5. An electron spin resonance study of the reduction of peroxides by anthracycline semiquinones. Kalyanaraman B; Sealy RC; Sinha BK Biochim Biophys Acta; 1984 Jun; 799(3):270-5. PubMed ID: 6329317 [TBL] [Abstract][Full Text] [Related]
6. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. Yamazaki I; Piette LH J Biol Chem; 1990 Aug; 265(23):13589-94. PubMed ID: 2166035 [TBL] [Abstract][Full Text] [Related]
7. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates. Vile GF; Winterbourn CC; Sutton HC Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582 [TBL] [Abstract][Full Text] [Related]
8. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction. Thomas C; Vile GF; Winterbourn CC Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256 [TBL] [Abstract][Full Text] [Related]
9. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma. Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330 [TBL] [Abstract][Full Text] [Related]
10. An in vivo ESR spin-trapping study: free radical generation in rats from formate intoxication--role of the Fenton reaction. Dikalova AE; Kadiiska MB; Mason RP Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13549-53. PubMed ID: 11717423 [TBL] [Abstract][Full Text] [Related]
11. Production of hydroxyl radical by iron(III)-anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system. Malisza KL; Hasinoff BB Arch Biochem Biophys; 1995 Aug; 321(1):51-60. PubMed ID: 7639535 [TBL] [Abstract][Full Text] [Related]
12. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: A metal-independent organic Fenton reaction. Zhu BZ; Kitrossky N; Chevion M Biochem Biophys Res Commun; 2000 Apr; 270(3):942-6. PubMed ID: 10772930 [TBL] [Abstract][Full Text] [Related]
13. Self-limiting enhancement by nitric oxide of oxygen free radical-induced endothelial cell injury: evidence against the dual action of NO as hydroxyl radical donor/scavenger. Az-ma T; Fujii K; Yuge O Br J Pharmacol; 1996 Oct; 119(3):455-62. PubMed ID: 8894164 [TBL] [Abstract][Full Text] [Related]
14. Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen. Komiyama T; Kikuchi T; Sugiura Y J Pharmacobiodyn; 1986 Aug; 9(8):651-64. PubMed ID: 3023600 [TBL] [Abstract][Full Text] [Related]
15. Reduction of oxygen by NADH/NADH dehydrogenase in the presence of adriamycin. Thornalley PJ; Bannister WH; Bannister JV Free Radic Res Commun; 1986; 2(3):163-71. PubMed ID: 2850270 [TBL] [Abstract][Full Text] [Related]
17. New modes of action of desferrioxamine: scavenging of semiquinone radical and stimulation of hydrolysis of tetrachlorohydroquinone. Zhu BZ; Har-El R; Kitrossky N; Chevion M Free Radic Biol Med; 1998 Jan; 24(2):360-9. PubMed ID: 9433912 [TBL] [Abstract][Full Text] [Related]
18. Free radical generation at the solid/liquid interface in iron containing minerals. Fubini B; Mollo L; Giamello E Free Radic Res; 1995 Dec; 23(6):593-614. PubMed ID: 8574353 [TBL] [Abstract][Full Text] [Related]
19. Role of superoxide and trace transition metals in the production of alpha-hydroxyethyl radical from ethanol by microsomes from alcohol dehydrogenase-deficient deermice. Knecht KT; Thurman RG; Mason RP Arch Biochem Biophys; 1993 Jun; 303(2):339-48. PubMed ID: 8390220 [TBL] [Abstract][Full Text] [Related]
20. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals, Flowers L; Ohnishi ST; Penning TM Biochemistry; 1997 Jul; 36(28):8640-8. PubMed ID: 9214311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]