These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 1654778)

  • 21. The production of hydroxyl radicals by adriamycin in red blood cells.
    Bannister JV; Thornalley PJ
    FEBS Lett; 1983 Jun; 157(1):170-2. PubMed ID: 6305715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ADP-iron as a Fenton reactant: radical reactions detected by spin trapping, hydrogen abstraction, and aromatic hydroxylation.
    Gutteridge JM; Nagy I; Maidt L; Floyd RA
    Arch Biochem Biophys; 1990 Mar; 277(2):422-8. PubMed ID: 2155582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of cobalt(II) and iron(II) hydroxyl and superoxide free radical formation.
    Kadiiska MB; Maples KR; Mason RP
    Arch Biochem Biophys; 1989 Nov; 275(1):98-111. PubMed ID: 2554814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of a Fenton type reaction: effect of captopril and chelating reagents.
    Jay D; Cuéllar A; Jay EG; García C; Gleason R; Muñoz E
    Arch Biochem Biophys; 1992 Nov; 298(2):740-6. PubMed ID: 1329667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals.
    Gutteridge JM; Quinlan GJ; Wilkins S
    FEBS Lett; 1984 Feb; 167(1):37-41. PubMed ID: 6321237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA.
    Giulivi C; Boveris A; Cadenas E
    Arch Biochem Biophys; 1995 Feb; 316(2):909-16. PubMed ID: 7864650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of metal chelators on the production of hydroxyl radicals in thylakoids.
    Snyrychová I; Pospísil P; Naus J
    Photosynth Res; 2006 Jun; 88(3):323-9. PubMed ID: 16755325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deoxyribose breakdown by the adriamycin semiquinone and H2O2: evidence for hydroxyl radical participation.
    Bates DA; Winterbourn CC
    FEBS Lett; 1982 Aug; 145(1):137-42. PubMed ID: 6897044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement by catechols of hydroxyl-radical formation in the presence of ferric ions and hydrogen peroxide.
    Iwahashi H; Morishita H; Ishii T; Sugata R; Kido R
    J Biochem; 1989 Mar; 105(3):429-34. PubMed ID: 2543661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide.
    Baldwin DA; Jenny ER; Aisen P
    J Biol Chem; 1984 Nov; 259(21):13391-4. PubMed ID: 6092375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing electron spin resonance detection of hydroxyl radical in water.
    Cheng SA; Fung WK; Chan KY; Shen PK
    Chemosphere; 2003 Sep; 52(10):1797-805. PubMed ID: 12871746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adriamycin activation and oxygen free radical formation in human breast tumor cells: protective role of glutathione peroxidase in adriamycin resistance.
    Sinha BK; Mimnaugh EG; Rajagopalan S; Myers CE
    Cancer Res; 1989 Jul; 49(14):3844-8. PubMed ID: 2544260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydroxyl radical production and DNA damage induced by anthracycline-iron complex.
    Muindi JR; Sinha BK; Gianni L; Myers CE
    FEBS Lett; 1984 Jul; 172(2):226-30. PubMed ID: 6086388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron spin resonance spectroscopy of oxygen radicals generated by synthetic fecapentaene-12 and reduction of fecapentaene mutagenicity to Salmonella typhimurium by hydroxyl radical scavenging.
    de Kok TM; van Maanen JM; Lankelma J; ten Hoor F; Kleinjans JC
    Carcinogenesis; 1992 Jul; 13(7):1249-55. PubMed ID: 1322251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of low molecular weight chelators on iron chelation and free radical generation as studied by ESR measurement.
    Qian Y; Goodell B; Felix CC
    Chemosphere; 2002 Jul; 48(1):21-8. PubMed ID: 12137053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of adriamycin toxicity by iron chelates is not a free radical mechanism.
    Gelvan D
    Biol Trace Elem Res; 1997 Mar; 56(3):295-309. PubMed ID: 9197926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Possible roles of free radicals in alcoholic tissue damage.
    Reinke LA; Rau JM; McCay PB
    Free Radic Res Commun; 1990; 9(3-6):205-11. PubMed ID: 2167258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study.
    Gunther MR; Hanna PM; Mason RP; Cohen MS
    Arch Biochem Biophys; 1995 Jan; 316(1):515-22. PubMed ID: 7840659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bactericidal activity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides.
    Akaike T; Sato K; Ijiri S; Miyamoto Y; Kohno M; Ando M; Maeda H
    Arch Biochem Biophys; 1992 Apr; 294(1):55-63. PubMed ID: 1312811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.