These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16548001)

  • 1. Influence of global fluorination on chloramphenicol acetyltransferase activity and stability.
    Panchenko T; Zhu WW; Montclare JK
    Biotechnol Bioeng; 2006 Aug; 94(5):921-30. PubMed ID: 16548001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorinated chloramphenicol acetyltransferase thermostability and activity profile: improved thermostability by a single-isoleucine mutant.
    Voloshchuk N; Lee MX; Zhu WW; Tanrikulu IC; Montclare JK
    Bioorg Med Chem Lett; 2007 Nov; 17(21):5907-11. PubMed ID: 17845847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of local carboxy-terminal hydrophobic interactions essential for folding or stability of chloramphenicol acetyltransferase.
    Van der Schueren J; Robben J; Goossens K; Heremans K; Volckaert G
    J Mol Biol; 1996 Mar; 256(5):878-88. PubMed ID: 8601839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability.
    Ogino H; Uchiho T; Doukyu N; Yasuda M; Ishimi K; Ishikawa H
    Biochem Biophys Res Commun; 2007 Jul; 358(4):1028-33. PubMed ID: 17521612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold.
    Ochoa-Leyva A; Soberón X; Sánchez F; Argüello M; Montero-Morán G; Saab-Rincón G
    J Mol Biol; 2009 Apr; 387(4):949-64. PubMed ID: 19233201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial activity and protease stability of peptides containing fluorinated amino acids.
    Meng H; Kumar K
    J Am Chem Soc; 2007 Dec; 129(50):15615-22. PubMed ID: 18041836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fluorination on protein-engineered coiled-coil fibers.
    More HT; Zhang KS; Srivastava N; Frezzo JA; Montclare JK
    Biomacromolecules; 2015 Apr; 16(4):1210-7. PubMed ID: 25794312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoadaptation-directed evolution of chloramphenicol acetyltransferase in an error-prone thermophile using improved procedures.
    Kobayashi J; Furukawa M; Ohshiro T; Suzuki H
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5563-72. PubMed ID: 25783628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Misfolding of chloramphenicol acetyltransferase due to carboxy-terminal truncation can be corrected by second-site mutations.
    Van der Schueren J; Robben J; Volckaert G
    Protein Eng; 1998 Dec; 11(12):1211-7. PubMed ID: 9930670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR.
    Kim MS; Lei XG
    Appl Microbiol Biotechnol; 2008 May; 79(1):69-75. PubMed ID: 18340444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues.
    Son S; Tanrikulu IC; Tirrell DA
    Chembiochem; 2006 Aug; 7(8):1251-7. PubMed ID: 16758500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, purification, refolding and characterization of a putative lysophospholipase from Pyrococcus furiosus: retention of structure and lipase/esterase activity in the presence of water-miscible organic solvents at high temperatures.
    Chandrayan SK; Dhaunta N; Guptasarma P
    Protein Expr Purif; 2008 Jun; 59(2):327-33. PubMed ID: 18400514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Williams JA; Cullis PM; Shaw WV; Leslie AG
    Biochemistry; 1991 Apr; 30(15):3763-70. PubMed ID: 2015231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional consequences of the replacement of proximal residues Cys(172) and Cys(192) in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Chlamydomonas reinhardtii.
    García-Murria MJ; Karkehabadi S; Marín-Navarro J; Satagopan S; Andersson I; Spreitzer RJ; Moreno J
    Biochem J; 2008 Apr; 411(2):241-7. PubMed ID: 18072944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.
    Iinoya K; Kotani T; Sasano Y; Takagi H
    Biotechnol Bioeng; 2009 Jun; 103(2):341-52. PubMed ID: 19170243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Leucine and Lysine substitution on the antimicrobial activity and evaluation of the mechanism of the HPA3NT3 analog peptide.
    Gopal R; Park SC; Ha KJ; Cho SJ; Kim SW; Song PI; Nah JW; Park Y; Hahm KS
    J Pept Sci; 2009 Sep; 15(9):589-94. PubMed ID: 19642077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal instability of chloramphenicol acetyltransferase: assay revisions required.
    Mandel HG
    Anal Biochem; 1995 Sep; 230(1):191-3. PubMed ID: 8585622
    [No Abstract]   [Full Text] [Related]  

  • 19. Evolving proteins of novel composition.
    Montclare JK; Tirrell DA
    Angew Chem Int Ed Engl; 2006 Jul; 45(27):4518-21. PubMed ID: 16763955
    [No Abstract]   [Full Text] [Related]  

  • 20. Investigating the in vivo activity of the DeaD protein using protein-protein interactions and the translational activity of structured chloramphenicol acetyltransferase mRNAs.
    Butland G; Krogan NJ; Xu J; Yang WH; Aoki H; Li JS; Krogan N; Menendez J; Cagney G; Kiani GC; Jessulat MG; Datta N; Ivanov I; Abouhaidar MG; Emili A; Greenblatt J; Ganoza MC; Golshani A
    J Cell Biochem; 2007 Feb; 100(3):642-52. PubMed ID: 16983699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.