These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16548066)

  • 61. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium.
    Lenaerts K; Bouwman FG; Lamers WH; Renes J; Mariman EC
    BMC Genomics; 2007 Apr; 8():91. PubMed ID: 17407598
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Proteomic profiling of CHO cells with enhanced rhBMP-2 productivity following co-expression of PACEsol.
    Meleady P; Henry M; Gammell P; Doolan P; Sinacore M; Melville M; Francullo L; Leonard M; Charlebois T; Clynes M
    Proteomics; 2008 Jul; 8(13):2611-24. PubMed ID: 18546152
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biomarker discovery for kidney diseases by mass spectrometry.
    Niwa T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jul; 870(2):148-53. PubMed ID: 18024247
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Difference of gene expression between the central and the peripheral epithelia of the bovine lens.
    Ma X; Wu MX; Zhang YL; Cui DM; Li MT; Wu KL
    Chin Med J (Engl); 2009 May; 122(9):1072-80. PubMed ID: 19493443
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Age-related proteome analysis of the mouse brain: a 2-DE study.
    Carrette O; Burkhard PR; Hochstrasser DF; Sanchez JC
    Proteomics; 2006 Sep; 6(18):4940-9. PubMed ID: 16912971
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Proteomic analysis of apoptosis related proteins regulated by proto-oncogene protein DEK.
    Kim DW; Chae JI; Kim JY; Pak JH; Koo DB; Bahk YY; Seo SB
    J Cell Biochem; 2009 Apr; 106(6):1048-59. PubMed ID: 19229864
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Arginine deficiency in preconfluent intestinal Caco-2 cells modulates expression of proteins involved in proliferation, apoptosis, and heat shock response.
    Lenaerts K; Renes J; Bouwman FG; Noben JP; Robben J; Smit E; Mariman EC
    Proteomics; 2007 Feb; 7(4):565-577. PubMed ID: 17309102
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.
    Oberemm A; Hansen U; Böhmert L; Meckert C; Braeuning A; Thünemann AF; Lampen A
    J Appl Toxicol; 2016 Mar; 36(3):404-13. PubMed ID: 26434666
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dietary effects of copper and iron deficiency on rat intestine: a differential display proteome analysis.
    Tosco A; Siciliano RA; Cacace G; Mazzeo MF; Capone R; Malorni A; Leone A; Marzullo L
    J Proteome Res; 2005; 4(5):1781-8. PubMed ID: 16212433
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of glutamine deprivation on protein synthesis in a model of human enterocytes in culture.
    Le Bacquer O; Nazih H; Blottière H; Meynial-Denis D; Laboisse C; Darmaun D
    Am J Physiol Gastrointest Liver Physiol; 2001 Dec; 281(6):G1340-7. PubMed ID: 11705738
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Glutamine regulates the human epithelial intestinal HCT-8 cell proteome under apoptotic conditions.
    Deniel N; Marion-Letellier R; Charlionet R; Tron F; Leprince J; Vaudry H; Ducrotté P; Déchelotte P; Thébault S
    Mol Cell Proteomics; 2007 Oct; 6(10):1671-9. PubMed ID: 17545681
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reduction of acrylamide uptake by dietary proteins in a caco-2 gut model.
    Schabacker J; Schwend T; Wink M
    J Agric Food Chem; 2004 Jun; 52(12):4021-5. PubMed ID: 15186132
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glutamine-dependent changes in gene expression and protein activity.
    Curi R; Lagranha CJ; Doi SQ; Sellitti DF; Procopio J; Pithon-Curi TC
    Cell Biochem Funct; 2005; 23(2):77-84. PubMed ID: 15386529
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Glutamine and nucleotide metabolism within enterocytes.
    McCauley R; Kong SE; Hall J
    JPEN J Parenter Enteral Nutr; 1998; 22(2):105-11. PubMed ID: 9527969
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases.
    Kim MH; Kim H
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28498331
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Regulation of intestinal protein metabolism by amino acids.
    Bertrand J; Goichon A; Déchelotte P; Coëffier M
    Amino Acids; 2013 Sep; 45(3):443-50. PubMed ID: 22643845
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides.
    Xu X; Yang J; Ning Z; Zhang X
    Food Funct; 2016 Jan; 7(1):250-61. PubMed ID: 26392301
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Glutamine, gene expression, and cell function.
    Curi R; Newsholme P; Procopio J; Lagranha C; Gorjão R; Pithon-Curi TC
    Front Biosci; 2007 Jan; 12():344-57. PubMed ID: 17127303
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 8-Hydroxylysine: an inhibitor of glutamine and protein synthesis by the Ehrlich ascites carcinoma cell.
    RABINOVITZ M; OLSON ME; GREENBERG DM
    Cancer Res; 1957 Oct; 17(9):885-9. PubMed ID: 13472679
    [No Abstract]   [Full Text] [Related]  

  • 80. [Effect of vitamin C on the synthesis of glutamine and amidization of proteins in the brain].
    ZALESSKAIA IuM; MARTINSON EE; TIAKHEPYL'D LIa
    Vopr Pitan; 1963; 22():60-4. PubMed ID: 14003130
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.