These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 1654846)
1. Phosphorylation of RII subunit and attenuation of cAMP-dependent protein kinase activity by proline-directed protein kinase. Braun RK; Vulliet PR; Carbonaro-Hall DA; Hall FL Arch Biochem Biophys; 1991 Aug; 289(1):187-91. PubMed ID: 1654846 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the cytoplasmic proline-directed protein kinase in proliferative cells and tissues as a heterodimer comprised of p34cdc2 and p58cyclin A. Hall FL; Braun RK; Mihara K; Fung YK; Berndt N; Carbonaro-Hall DA; Vulliet PR J Biol Chem; 1991 Sep; 266(26):17430-40. PubMed ID: 1832672 [TBL] [Abstract][Full Text] [Related]
3. Co-purification of p34cdc2/p58cyclin A proline-directed protein kinase and the retinoblastoma tumor susceptibility gene product: interaction of an oncogenic serine/threonine protein kinase with a tumor-suppressor protein. Williams RT; Carbonaro-Hall DA; Hall FL Oncogene; 1992 Mar; 7(3):423-32. PubMed ID: 1532245 [TBL] [Abstract][Full Text] [Related]
4. High-affinity binding of the regulatory subunit (RII) of cAMP-dependent protein kinase to microtubule-associated and other cellular proteins. Lohmann SM; DeCamilli P; Einig I; Walter U Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6723-7. PubMed ID: 6093118 [TBL] [Abstract][Full Text] [Related]
5. Tryptic peptide mapping studies on the regulatory subunits of type II protein kinases from cerebral cortex and heart. Evidence for overall structural divergence and differences in the autophosphorylation and cAMP-binding domains. Stein JC; Sarkar D; Rubin CS J Neurochem; 1984 Feb; 42(2):547-53. PubMed ID: 6319601 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation of synapsin I at a novel site by proline-directed protein kinase. Hall FL; Mitchell JP; Vulliet PR J Biol Chem; 1990 Apr; 265(12):6944-8. PubMed ID: 2108963 [TBL] [Abstract][Full Text] [Related]
7. A constitutively active holoenzyme form of the cAMP-dependent protein kinase. Wang YH; Scott JD; McKnight GS; Krebs EG Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2446-50. PubMed ID: 1848703 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of the regulatory subunit of type II beta cAMP-dependent protein kinase by cyclin B/p34cdc2 kinase impairs its binding to microtubule-associated protein 2. Keryer G; Luo Z; Cavadore JC; Erlichman J; Bornens M Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5418-22. PubMed ID: 8516283 [TBL] [Abstract][Full Text] [Related]
9. Type II regulatory subunit of cAMP-dependent protein kinase. Phosphorylation by casein kinase II at a site that is also phosphorylated in vivo. Carmichael DF; Geahlen RL; Allen SM; Krebs EG J Biol Chem; 1982 Sep; 257(17):10440-5. PubMed ID: 6286653 [TBL] [Abstract][Full Text] [Related]
10. The regulatory subunit monomer of cAMP-dependent protein kinase retains the salient kinetic properties of the native dimeric subunit. Rannels SR; Cobb CE; Landiss LR; Corbin JD J Biol Chem; 1985 Mar; 260(6):3423-30. PubMed ID: 2982860 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation of sites 3 and 4 in rabbit skeletal muscle glycogen synthase by cAMP-dependent protein kinase. Sheorain VS; Corbin JD; Soderling TR J Biol Chem; 1985 Feb; 260(3):1567-72. PubMed ID: 2981863 [TBL] [Abstract][Full Text] [Related]
12. Cardiac myosin-binding protein C (MyBP-C): identification of protein kinase A and protein kinase C phosphorylation sites. Mohamed AS; Dignam JD; Schlender KK Arch Biochem Biophys; 1998 Oct; 358(2):313-9. PubMed ID: 9784245 [TBL] [Abstract][Full Text] [Related]
13. Changes in cyclic adenosine 3':5'-monophosphate-dependent protein kinases during the progression of urethan-induced mouse lung tumors. Butley MS; Stoner GD; Beer DG; Beer DS; Mason RJ; Malkinson AM Cancer Res; 1985 Aug; 45(8):3677-85. PubMed ID: 2990675 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation of the GABAA receptor by cAMP-dependent protein kinase and by protein kinase C: analysis of the substrate domain. Browning MD; Endo S; Smith GB; Dudek EM; Olsen RW Neurochem Res; 1993 Jan; 18(1):95-100. PubMed ID: 8385279 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of the cAMP-dependent protein kinase (PKA) regulatory subunit modulates PKA-AKAP interaction, substrate phosphorylation, and calcium signaling in cardiac cells. Manni S; Mauban JH; Ward CW; Bond M J Biol Chem; 2008 Aug; 283(35):24145-54. PubMed ID: 18550536 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation of myocardial fructose-6-phosphate,2-kinase: fructose-2,6-bisphosphatase by cAMP-dependent protein kinase and protein kinase C. Activation by phosphorylation and amino acid sequences of the phosphorylation sites. Kitamura K; Kangawa K; Matsuo H; Uyeda K J Biol Chem; 1988 Nov; 263(32):16796-801. PubMed ID: 2846551 [TBL] [Abstract][Full Text] [Related]
19. Type II regulatory subunit dimerization determines the subcellular localization of the cAMP-dependent protein kinase. Scott JD; Stofko RE; McDonald JR; Comer JD; Vitalis EA; Mangili JA J Biol Chem; 1990 Dec; 265(35):21561-6. PubMed ID: 2147685 [TBL] [Abstract][Full Text] [Related]
20. Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. Carr DW; Hausken ZE; Fraser ID; Stofko-Hahn RE; Scott JD J Biol Chem; 1992 Jul; 267(19):13376-82. PubMed ID: 1618839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]