These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16548530)

  • 21. Thermodynamic stability and structural features of the J4/5 loop in a Pneumocystis carinii group I intron.
    Schroeder SJ; Fountain MA; Kennedy SD; Lukavsky PJ; Puglisi JD; Krugh TR; Turner DH
    Biochemistry; 2003 Dec; 42(48):14184-96. PubMed ID: 14640686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structures and Energetics of Four Adjacent G·U Pairs That Stabilize an RNA Helix.
    Gu X; Mooers BH; Thomas LM; Malone J; Harris S; Schroeder SJ
    J Phys Chem B; 2015 Oct; 119(42):13252-61. PubMed ID: 26425937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR structures of (rGCUGAGGCU)2 and (rGCGGAUGCU)2: probing the structural features that shape the thermodynamic stability of GA pairs.
    Tolbert BS; Kennedy SD; Schroeder SJ; Krugh TR; Turner DH
    Biochemistry; 2007 Feb; 46(6):1511-22. PubMed ID: 17279616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability of RNA hairpin loops closed by AU base pairs.
    Vecenie CJ; Serra MJ
    Biochemistry; 2004 Sep; 43(37):11813-7. PubMed ID: 15362866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR studies of the effect of GA-AG base pairs to the active conformation of hammerhead ribozyme.
    Amano M
    Nucleic Acids Symp Ser (Oxf); 2006; (50):43-4. PubMed ID: 17150808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3' terminal nucleotides determine thermodynamic stabilities of mismatches at the ends of RNA helices.
    Clanton-Arrowood K; McGurk J; Schroeder SJ
    Biochemistry; 2008 Dec; 47(50):13418-27. PubMed ID: 19053257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consecutive terminal GU pairs stabilize RNA helices.
    Nguyen MT; Schroeder SJ
    Biochemistry; 2010 Dec; 49(49):10574-81. PubMed ID: 21067139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein.
    Smith JS; Nikonowicz EP
    Biochemistry; 1998 Sep; 37(39):13486-98. PubMed ID: 9753434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular recognition in purine-rich internal loops: thermodynamic, structural, and dynamic consequences of purine for adenine substitutions in 5'(rGGCAAGCCU)2.
    Znosko BM; Burkard ME; Krugh TR; Turner DH
    Biochemistry; 2002 Dec; 41(50):14978-87. PubMed ID: 12475247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair.
    Hofmann HP; Limmer S; Hornung V; Sprinzl M
    RNA; 1997 Nov; 3(11):1289-300. PubMed ID: 9409620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamics of RNA internal loops with a guanosine-guanosine pair adjacent to another noncanonical pair.
    Burkard ME; Xia T; Turner DH
    Biochemistry; 2001 Feb; 40(8):2478-83. PubMed ID: 11327869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform.
    Amarasinghe GK; De Guzman RN; Turner RB; Summers MF
    J Mol Biol; 2000 May; 299(1):145-56. PubMed ID: 10860728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.
    Phan A; Mailey K; Saeki J; Gu X; Schroeder SJ
    RNA; 2017 May; 23(5):770-781. PubMed ID: 28213527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zipper-like Watson-Crick base-pairs.
    Chou SH; Chin KH
    J Mol Biol; 2001 Sep; 312(4):753-68. PubMed ID: 11575930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of 1-methyladenine on thermodynamic stabilities of double-helical DNA structures.
    Yang H; Lam SL
    FEBS Lett; 2009 May; 583(9):1548-53. PubMed ID: 19376116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif.
    Cojocaru V; Klement R; Jovin TM
    Nucleic Acids Res; 2005; 33(10):3435-46. PubMed ID: 15956103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent.
    Heus HA; Wijmenga SS; Hoppe H; Hilbers CW
    J Mol Biol; 1997 Aug; 271(1):147-58. PubMed ID: 9300061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic study of internal loops in oligoribonucleotides: symmetric loops are more stable than asymmetric loops.
    Peritz AE; Kierzek R; Sugimoto N; Turner DH
    Biochemistry; 1991 Jul; 30(26):6428-36. PubMed ID: 1711369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic characterization of RNA 2 × 3 nucleotide internal loops.
    Hausmann NZ; Znosko BM
    Biochemistry; 2012 Jul; 51(26):5359-68. PubMed ID: 22720720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of Janus compounds for the recognition of G-U mismatched nucleobase pairs.
    Artigas G; Marchán V
    J Org Chem; 2013 Nov; 78(21):10666-77. PubMed ID: 24087986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.