These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1654858)

  • 1. Flavoenzymes reduce vanadium(V) and molecular oxygen and generate hydroxyl radical.
    Shi XL; Dalal NS
    Arch Biochem Biophys; 1991 Sep; 289(2):355-61. PubMed ID: 1654858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-electron reduction of vanadium(V) by flavoenzymes/NADPH.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1993 Apr; 302(1):300-3. PubMed ID: 8385902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals.
    Shi XL; Dalal NS
    FEBS Lett; 1990 Dec; 276(1-2):189-91. PubMed ID: 2176163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-electron reduction of chromate by NADPH-dependent glutathione reductase.
    Shi XL; Dalal NS
    J Inorg Biochem; 1990 Sep; 40(1):1-12. PubMed ID: 2178178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadium (IV) formation in the reduction of vanadate by glutathione reductase/NADPH and the role of molecular oxygen.
    Shi X; Flynn DC; Liu K; Dalal N
    Ann Clin Lab Sci; 1997; 27(6):422-7. PubMed ID: 9433540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transition metal-mediated formation of the hydroxyl free radical during the reduction of molecular oxygen by ferredoxin-ferredoxin:NADP+ oxidoreductase.
    Morehouse KM; Mason RP
    J Biol Chem; 1988 Jan; 263(3):1204-11. PubMed ID: 2826473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium (V) and hydroxyl radical formation during the glutathione reductase-catalyzed reduction of chromium (VI).
    Shi XL; Dalal NS
    Biochem Biophys Res Commun; 1989 Aug; 163(1):627-34. PubMed ID: 2550002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vanadate-induced activation of activator protein-1: role of reactive oxygen species.
    Ding M; Li JJ; Leonard SS; Ye JP; Shi X; Colburn NH; Castranova V; Vallyathan V
    Carcinogenesis; 1999 Apr; 20(4):663-8. PubMed ID: 10223197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyl radical generation in the NADH/microsomal reduction of vanadate.
    Shi X; Dalal NS
    Free Radic Res Commun; 1992; 17(6):369-76. PubMed ID: 1337535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-electron reduction of carcinogen chromate by microsomes, mitochondria, and Escherichia coli: identification of Cr(V) and .OH radical.
    Shi XL; Dalal NS; Vallyathan V
    Arch Biochem Biophys; 1991 Nov; 290(2):381-6. PubMed ID: 1656878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-electron reduction of vanadate by ascorbate and related free radical generation at physiological pH.
    Ding M; Gannett PM; Rojanasakul Y; Liu K; Shi X
    J Inorg Biochem; 1994 Aug; 55(2):101-12. PubMed ID: 8051539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1992 May; 294(2):403-6. PubMed ID: 1314540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enzymatic one-electron reduction of porphyrins to their anion free radicals.
    Morehouse KM; Mason RP
    Arch Biochem Biophys; 1990 Dec; 283(2):306-10. PubMed ID: 2177327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enzymatic reduction of actinomycin D to a free radical species.
    Flitter WD; Mason RP
    Arch Biochem Biophys; 1988 Dec; 267(2):632-9. PubMed ID: 2850768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione reductase functions as vanadate(V) reductase.
    Shi XL; Dalal NS
    Arch Biochem Biophys; 1990 Apr; 278(1):288-90. PubMed ID: 2157361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vanadate-induced cell growth regulation and the role of reactive oxygen species.
    Zhang Z; Huang C; Li J; Leonard SS; Lanciotti R; Butterworth L; Shi X
    Arch Biochem Biophys; 2001 Aug; 392(2):311-20. PubMed ID: 11488607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadium(IV)-mediated free radical generation and related 2'-deoxyguanosine hydroxylation and DNA damage.
    Shi X; Jiang H; Mao Y; Ye J; Saffiotti U
    Toxicology; 1996 Jan; 106(1-3):27-38. PubMed ID: 8571399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of OH radical during enzymatic reduction of 9,10-anthraquinone-2-sulphonate. Can semiquinone decompose hydrogen peroxide?
    Sushkov DG; Gritsan NP; Weiner LM
    FEBS Lett; 1987 Dec; 225(1-2):139-44. PubMed ID: 2826236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl radical formation and lipid peroxidation enhancement by chromium. In vitro study.
    Coudray C; Faure P; Rachidi S; Jeunet A; Richard MJ; Roussel AM; Favier A
    Biol Trace Elem Res; 1992; 32():161-70. PubMed ID: 1375053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.