These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16548692)

  • 1. Photosynthetic oxygen generator for bioartificial pancreas.
    Bloch K; Papismedov E; Yavriyants K; Vorobeychik M; Beer S; Vardi P
    Tissue Eng; 2006 Feb; 12(2):337-44. PubMed ID: 16548692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized microalgal cells as an oxygen supply system for encapsulated pancreatic islets: a feasibility study.
    Bloch K; Papismedov E; Yavriyants K; Vorobeychik M; Beer S; Vardi P
    Artif Organs; 2006 Sep; 30(9):715-8. PubMed ID: 16934101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilized hemoglobin improves islet function and viability in the bioartificial pancreas in vitro and in vivo.
    Schrezenmeir J; Velten F; Beyer J
    Transplant Proc; 1994 Apr; 26(2):792-800. PubMed ID: 8171665
    [No Abstract]   [Full Text] [Related]  

  • 4. Encapsulated beta-islet cells as a bioartificial pancreas to treat insulin-dependent diabetes during pregnancy.
    Hunter SK; Wang Y; Weiner CP; Niebyl J
    Am J Obstet Gynecol; 1997 Oct; 177(4):746-52. PubMed ID: 9369813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cross-linked hemoglobin on functionality and viability of microencapsulated pancreatic islets.
    Chae SY; Kim SW; Bae YH
    Tissue Eng; 2002 Jul; 8(3):379-94. PubMed ID: 12167225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a bioartificial pancreas: I. long-term propagation and basal and induced secretion from entrapped betaTC3 cell cultures.
    Papas KK; Long RC; Sambanis A; Constantinidis I
    Biotechnol Bioeng; 1999; 66(4):219-30. PubMed ID: 10578092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a bioartificial pancreas: II. Effects of oxygen on long-term entrapped betaTC3 cell cultures.
    Papas KK; Long RC; Sambanis A; Constantinidis I
    Biotechnol Bioeng; 1999; 66(4):231-7. PubMed ID: 10578093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes.
    Llacua A; de Haan BJ; Smink SA; de Vos P
    J Biomed Mater Res A; 2016 Jul; 104(7):1788-96. PubMed ID: 26990360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What are the relevant parameters for the geometrical optimization of an implantable bioartificial pancreas?
    Dulong JL; Legallais C
    J Biomech Eng; 2005 Dec; 127(7):1054-61. PubMed ID: 16502647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of short-term hypoxia on a transformed cell-based bioartificial pancreatic construct.
    Papas KK; Long RC; Constantinidis I; Sambanis A
    Cell Transplant; 2000; 9(3):415-22. PubMed ID: 10972340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of various gels for immobilization of islets in bioartificial pancreas using a mesh-reinforced polyvinyl alcohol hydrogel tube.
    Aung T; Inoue K; Kogire M; Doi R; Kaji H; Tun T; Hayashi H; Echigo Y; Wada M; Imamura M
    Transplant Proc; 1995 Feb; 27(1):619-21. PubMed ID: 7879122
    [No Abstract]   [Full Text] [Related]  

  • 12. Modeling oxygen transport in a cylindrical bioartificial pancreas.
    Thrash M
    ASAIO J; 2010; 56(4):338-43. PubMed ID: 20559130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules.
    Langlois G; Dusseault J; Bilodeau S; Tam SK; Magassouba D; Hallé JP
    Acta Biomater; 2009 Nov; 5(9):3433-40. PubMed ID: 19520193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evaluation and computational modeling of the effects of encapsulation on the time-profile of glucose-stimulated insulin release of pancreatic islets.
    Buchwald P; Cechin SR; Weaver JD; Stabler CL
    Biomed Eng Online; 2015 Mar; 14():28. PubMed ID: 25889474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preserved insulin secretion capacity and graft function of cryostored encapsulated rat islets.
    Schneider S; Klein HH
    Regul Pept; 2011 Jan; 166(1-3):135-8. PubMed ID: 20959122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate modification improves long-term survival and function of transplanted encapsulated islets.
    Mallett AG; Korbutt GS
    Tissue Eng Part A; 2009 Jun; 15(6):1301-9. PubMed ID: 18950258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic perifusion to maintain and assess isolated pancreatic islets.
    Sweet IR; Cook DL; Wiseman RW; Greenbaum CJ; Lernmark A; Matsumoto S; Teague JC; Krohn KA
    Diabetes Technol Ther; 2002; 4(1):67-76. PubMed ID: 12017423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of bioartificial pancreas function made from sodium alginate and poly-L-lisine microcapsules settled with viable pancreatic islets.
    Gamian E; Kochman A; Rabczyński J
    Polim Med; 1999; 29(3-4):3-20. PubMed ID: 10858765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped beta TC3 mouse insulinoma cells.
    Constantinidis I; Rask I; Long RC; Sambanis A
    Biomaterials; 1999 Nov; 20(21):2019-27. PubMed ID: 10535813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microencapsulation of pancreatic islets for use in a bioartificial pancreas.
    Opara EC; McQuilling JP; Farney AC
    Methods Mol Biol; 2013; 1001():261-6. PubMed ID: 23494435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.