These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1654893)

  • 41. Ferroxidase activity of ferritin: effects of pH, buffer and Fe(II) and Fe(III) concentrations on Fe(II) autoxidation and ferroxidation.
    Yang X; Chasteen ND
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):615-8. PubMed ID: 10051430
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin.
    Goldstein S; Merenyi G; Samuni A
    J Am Chem Soc; 2004 Dec; 126(48):15694-701. PubMed ID: 15571391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rate of iron transfer through the horse spleen ferritin shell determined by the rate of formation of Prussian Blue and Fe-desferrioxamine within the ferritin cavity.
    Zhang B; Watt RK; Gálvez N; Domínguez-Vera JM; Watt GD
    Biophys Chem; 2006 Mar; 120(2):96-105. PubMed ID: 16314026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A cytosolic cytochrome b5-like protein in yeast cell accelerating the electron transfer from NADPH to cytochrome c catalyzed by Old Yellow Enzyme.
    Nakagawa M; Yamano T; Kuroda K; Nonaka Y; Tojo H; Fujii S
    Biochem Biophys Res Commun; 2005 Dec; 338(1):605-9. PubMed ID: 16182238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rate of electron transfer between plastocyanin, cytochrome f, related proteins and artificial redox reagents in solution.
    Wood PM
    Biochim Biophys Acta; 1974 Sep; 357(3):370-9. PubMed ID: 4472275
    [No Abstract]   [Full Text] [Related]  

  • 46. Kinetic studies on redox reactions of hemoproteins. I. Reduction of thermoresistant cytochrome c-552 and horse heart cytochrome c by ferrocyanide.
    Kihara H; Nakatani H; Hiromi K; Hon-Nami K
    Biochim Biophys Acta; 1977 Jun; 460(3):480-9. PubMed ID: 195599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduction of cytochrome b5 by NADPH-cytochrome P450 reductase.
    Guengerich FP
    Arch Biochem Biophys; 2005 Aug; 440(2):204-11. PubMed ID: 16055078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron transfer to ferricytochrome c: reaction with hydrated electrons and conformational transitions involved.
    Pecht I; Faraggi M
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):902-6. PubMed ID: 4623664
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Redox pathways in electron-transfer proteins: correlations between reactivities, solvent exposure, and unpaired-spin-density distributions.
    Tollin G; Hanson LK; Caffrey M; Meyer TE; Cusanovich MA
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3693-7. PubMed ID: 3012528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 1H NMR studies of the electron exchange between cytochrome c and iron hexacyanides. Definition of the iron hexacyanide binding sites on cytochrome c.
    Eley CG; Moore GR; Williams G; Williams RJ
    Eur J Biochem; 1982 May; 124(2):295-303. PubMed ID: 6284504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electron self-exchange in Pseudomonas cytochromes.
    Timkovich R; Cai ML; Dixon DW
    Biochem Biophys Res Commun; 1988 Feb; 150(3):1044-50. PubMed ID: 2829889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the apoprotein in the catalytic peroxidase-like function of ferritin.
    Arapova GS; Eryomin AN; Metelitza DI
    Biochemistry (Mosc); 1997 Dec; 62(12):1415-23. PubMed ID: 9481874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spectrophotometric analysis of the interaction between cytochrome b5 and cytochrome c.
    Mauk MR; Reid LS; Mauk AG
    Biochemistry; 1982 Apr; 21(8):1843-6. PubMed ID: 6282323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of the redox reactions of various types of cytochrome c with iron hexacyanides.
    Kihara H
    Biochim Biophys Acta; 1981 Jan; 634(1):93-104. PubMed ID: 6258647
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Catalytic effect of ferricyanide on the rate of electron transfer between myoglobin and cytochrome c].
    Moiseeva SA; Postnikova GB; Sivozhelezov VS
    Biofizika; 2001; 46(3):415-22. PubMed ID: 11449539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies on electron transfer from methanol dehydrogenase to cytochrome cL, both purified from Hyphomicrobium X.
    Dijkstra M; Frank J; Duine JA
    Biochem J; 1989 Jan; 257(1):87-94. PubMed ID: 2537627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism and kinetics of iron release from ferritin by dihydroflavins and dihydroflavin analogues.
    Jones T; Spencer R; Walsh C
    Biochemistry; 1978 Sep; 17(19):4011-7. PubMed ID: 708692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The rate of electron transfer between fungal laccase and reduced azurin or cytochrome c.
    Malmström BG; Agrò AF; Greenwood C; Antonini E; Brunori M; Mondovì B
    Arch Biochem Biophys; 1971 Jul; 145(1):349-53. PubMed ID: 5001228
    [No Abstract]   [Full Text] [Related]  

  • 59. Iron release from ferritin by flavin nucleotides.
    Melman G; Bou-Abdallah F; Vane E; Maura P; Arosio P; Melman A
    Biochim Biophys Acta; 2013 Oct; 1830(10):4669-74. PubMed ID: 23726988
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insensitivity of the ferritin iron core to heat treatment.
    Bertrand ML; Harris DC
    Experientia; 1979 Mar; 35(3):300-1. PubMed ID: 446596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.