These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16549034)

  • 1. PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory.
    Xue Y; Li A; Wang L; Feng H; Yao X
    BMC Bioinformatics; 2006 Mar; 7():163. PubMed ID: 16549034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPS: a novel group-based phosphorylation predicting and scoring method.
    Zhou FF; Xue Y; Chen GL; Yao X
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1443-8. PubMed ID: 15555589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.
    Huang HD; Lee TY; Tzeng SW; Horng JT
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W226-9. PubMed ID: 15980458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying protein-kinase-specific phosphorylation sites based on the Bagging-AdaBoost ensemble approach.
    Yu Z; Deng Z; Wong HS; Tan L
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):132-43. PubMed ID: 20215087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns.
    Wong YH; Lee TY; Liang HK; Huang CM; Wang TY; Yang YH; Chu CH; Huang HD; Ko MT; Hwang JK
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W588-94. PubMed ID: 17517770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection.
    Song J; Wang H; Wang J; Leier A; Marquez-Lago T; Yang B; Zhang Z; Akutsu T; Webb GI; Daly RJ
    Sci Rep; 2017 Jul; 7(1):6862. PubMed ID: 28761071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom.
    Gao X; Jin C; Ren J; Yao X; Xue Y
    Genomics; 2008 Dec; 92(6):457-63. PubMed ID: 18817865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating hidden Markov models for identifying protein kinase-specific phosphorylation sites.
    Huang HD; Lee TY; Tzeng SW; Wu LC; Horng JT; Tsou AP; Huang KT
    J Comput Chem; 2005 Jul; 26(10):1032-41. PubMed ID: 15889432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection.
    Xue Y; Liu Z; Cao J; Ma Q; Gao X; Wang Q; Jin C; Zhou Y; Wen L; Ren J
    Protein Eng Des Sel; 2011 Mar; 24(3):255-60. PubMed ID: 21062758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPS: a comprehensive www server for phosphorylation sites prediction.
    Xue Y; Zhou F; Zhu M; Ahmed K; Chen G; Yao X
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W184-7. PubMed ID: 15980451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative conservation analysis of the human mitotic phosphoproteome.
    Malik R; Nigg EA; Körner R
    Bioinformatics; 2008 Jun; 24(12):1426-32. PubMed ID: 18426804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STAR: predicting recombination sites from amino acid sequence.
    Bauer DC; Bodén M; Thier R; Gillam EM
    BMC Bioinformatics; 2006 Oct; 7():437. PubMed ID: 17026775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of PK-specific phosphorylation site based on information entropy.
    Wang M; Li C; Chen W; Wang C
    Sci China C Life Sci; 2008 Jan; 51(1):12-20. PubMed ID: 18176786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian search of functionally divergent protein subgroups and their function specific residues.
    Marttinen P; Corander J; Törönen P; Holm L
    Bioinformatics; 2006 Oct; 22(20):2466-74. PubMed ID: 16870932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting protein dissimilarities in multiple alignments using Bayesian variable selection.
    Kim S; Tsai J; Kagiampakis I; LiWang P; Vannucci M
    Bioinformatics; 2007 Jan; 23(2):245-6. PubMed ID: 17105719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general user interface for prediction servers of proteins' post-translational modification sites.
    Zhou F; Xue Y; Yao X; Xu Y
    Nat Protoc; 2006; 1(3):1318-21. PubMed ID: 17406417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteome sequence analysis and significance: mining association patterns around phosphorylation sites utilizing MAPRes.
    Ahmad I; Mehmood A; Khurshid A; Qazi WM; Hoessli DC; Walker-Nasir E; Shakoori AR;
    J Cell Biochem; 2009 Sep; 108(1):64-74. PubMed ID: 19544398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
    Pei J; Grishin NV
    Bioinformatics; 2007 Apr; 23(7):802-8. PubMed ID: 17267437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly specific prediction of phosphorylation sites in proteins.
    Koenig M; Grabe N
    Bioinformatics; 2004 Dec; 20(18):3620-7. PubMed ID: 15297298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.