These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16549680)

  • 21. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16.
    Denger K; Lehmann S; Cook AM
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2983-2991. PubMed ID: 21757489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164.
    Krejčík Z; Schleheck D; Hollemeyer K; Cook AM
    Arch Microbiol; 2012 Oct; 194(10):857-63. PubMed ID: 22588221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.
    Jiang Y; Wen J; Bai J; Jia X; Hu Z
    J Hazard Mater; 2007 Aug; 147(1-2):672-6. PubMed ID: 17597295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerobic degradation of mercaptosuccinate by the gram-negative bacterium Variovorax paradoxus strain B4.
    Carbajal-Rodríguez I; Stöveken N; Satola B; Wübbeler JH; Steinbüchel A
    J Bacteriol; 2011 Jan; 193(2):527-39. PubMed ID: 21075928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfoacetate generated by Rhodopseudomonas palustris from taurine.
    Denger K; Weinitschke S; Hollemeyer K; Cook AM
    Arch Microbiol; 2004 Oct; 182(2-3):254-8. PubMed ID: 15340795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organization of methylamine utilization genes (mau) in 'Methylobacillus flagellatum ' KT and analysis of mau mutants.
    Gak ER; Tsygankov YD; Chistoserdov AY
    Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1827-1835. PubMed ID: 9202457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and properties of methylamine dehydrogenase from Paracoccus denitrificans.
    Husain M; Davidson VL
    J Bacteriol; 1987 Apr; 169(4):1712-7. PubMed ID: 3558322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase.
    Denger K; Mayer J; Buhmann M; Weinitschke S; Smits TH; Cook AM
    J Bacteriol; 2009 Sep; 191(18):5648-56. PubMed ID: 19581363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MauE and MauD proteins are essential in methylamine metabolism of Paracoccus denitrificans.
    van der Palen CJ; Reijnders WN; de Vries S; Duine JA; van Spanning RJ
    Antonie Van Leeuwenhoek; 1997 Oct; 72(3):219-28. PubMed ID: 9403107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Pathway for Isethionate Dissimilation in Bacillus krulwichiae.
    Tong Y; Wei Y; Hu Y; Ang EL; Zhao H; Zhang Y
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomineralization of N,N-dimethylformamide by Paracoccus sp. strain DMF.
    Swaroop S; Sughosh P; Ramanathan G
    J Hazard Mater; 2009 Nov; 171(1-3):268-72. PubMed ID: 19592157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assimilation of methylamine by Paracoccus denitrificans involves formaldehyde transport by a specific carrier.
    Köstler M; Kleiner D
    FEMS Microbiol Lett; 1989 Nov; 53(1-2):1-4. PubMed ID: 2612879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium.
    Yang L; Zhao YH; Zhang BX; Yang CH; Zhang X
    FEMS Microbiol Lett; 2005 Oct; 251(1):67-73. PubMed ID: 16143458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organization of the methylamine utilization (mau) genes in Methylophilus methylotrophus W3A1-NS.
    Chistoserdov AY; McIntire WS; Mathews FS; Lidstrom ME
    J Bacteriol; 1994 Jul; 176(13):4073-80. PubMed ID: 8021188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001.
    Bai Y; Sun Q; Zhao C; Wen D; Tang X
    Biodegradation; 2008 Nov; 19(6):915-26. PubMed ID: 18437507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways.
    Kim SG; Bae HS; Lee ST
    Arch Microbiol; 2001 Oct; 176(4):271-7. PubMed ID: 11685371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources.
    Otani Y; Hasegawa K; Hanaki K
    Water Sci Technol; 2004; 50(8):15-22. PubMed ID: 15566182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of simultaneous nitrification and denitrification under controlled conditions by an aerobic denitrifier culture.
    Zhang Y; Shi Z; Chen M; Dong X; Zhou J
    Bioresour Technol; 2015 Jan; 175():602-5. PubMed ID: 25455090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition by trimethylamine of methylamine oxidation by Paracoccus denitrificans and bacterium W3A1.
    Davidson VL; Kumar MA
    Biochim Biophys Acta; 1990 Apr; 1016(3):339-43. PubMed ID: 2331476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paracoccus sulfuroxidans sp. nov., a sulfur oxidizer from activated sludge.
    Liu XY; Wang BJ; Jiang CY; Liu SJ
    Int J Syst Evol Microbiol; 2006 Nov; 56(Pt 11):2693-2695. PubMed ID: 17082413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.