BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 165501)

  • 1. Cyclic AMP modulates microvillus formation and agglutinability in transformed and normal mouse fibroblasts.
    Willingham MC; Pastan I
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1263-7. PubMed ID: 165501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle dependent agglutinability, distribution of concanavalin A binding sites and surface morphology of normal and transformed fibroblasts.
    Collard JG; Temmink JH
    Adv Exp Med Biol; 1975; 55():221-44. PubMed ID: 168744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP mediates the concanavalin A agglutinability of mouse fibroblasts.
    Willingham MC; Pastan I
    J Cell Biol; 1974 Oct; 63(1):288-94. PubMed ID: 4371073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface morphology and agglutinability with concanavalin A in normal and transformed murine fibroblasts.
    Collard JG; Temmink JH
    J Cell Biol; 1976 Jan; 68(1):101-12. PubMed ID: 173721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patching, microvilli, and the agglutination of normal and transformed cells.
    Ukena TE; Karnovsky MJ
    Prog Clin Biol Res; 1976; 9():261-73. PubMed ID: 1030804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference in the calcium regulation of concanavalin A agglutinability and surface microvilli in normal and transformed cells. Relationship to membrane--cytoskeleton interaction.
    Vlodavsky I; Sachs L
    Exp Cell Res; 1977 Mar; 105(1):179-89. PubMed ID: 320019
    [No Abstract]   [Full Text] [Related]  

  • 7. An analysis of Con A-mediated agglutination in a Chinese hamster ovary subclone which responds morphologically to growth in dibutyryl cyclic AMP. III. The role of microvilli in the agglutination process.
    Noonan KD; Ukena T
    J Cell Sci; 1978 Dec; 34():103-15. PubMed ID: 218980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dibutyryl cyclic AMP treatment of 3T3 and SV40 virus-transformed 3T3 cells in aggregates. Effects on mobility and cell contact ultrastructure.
    Gershman H; Drumm J; Rosen JJ
    J Cell Biol; 1977 Feb; 72(2):424-40. PubMed ID: 188830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3':5'-cyclic monophosphate.
    Sheppard JR
    Proc Natl Acad Sci U S A; 1971 Jun; 68(6):1316-20. PubMed ID: 4331087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the iodinated surface membrane proteins and concanavalin A agglutination of transformed Syrian hamster cells.
    Clarke SM; Fink LM
    Biochim Biophys Acta; 1977 Jan; 464(2):433-41. PubMed ID: 188476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell surface microvilli and cell agglutinability.
    Temmink JH; Collard JG
    Cell Biol Int Rep; 1977 Mar; 1(2):169-76. PubMed ID: 415816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface glycoproteins and concanavalin-A-mediated agglutinability of clonal variants and tumour cells derived from SV40-virus-transformed mouse 3T3 cells.
    Smets LA; van Beek WP; van Rooij H
    Int J Cancer; 1976 Oct; 18(4):462-8. PubMed ID: 185157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse 3T3 cell filtrability correlating with concanavalin A agglutinability.
    Wang PY; Youson JH; Drakos TT
    Biochim Biophys Acta; 1984 Dec; 802(3):467-76. PubMed ID: 6509087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP-induced morphological transformation of cells infected by temperature-sensitive mouse sarcoma virus. Expression of transformation-associated markers.
    Somers KD; Weberg AD; Steiner S
    J Cell Biol; 1977 Sep; 74(3):707-16. PubMed ID: 198411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of colchicine, cytochalasin B, and 2-deoxyglucose on the topographical organization of surface-bound concanavalin A in normal and transformed fibroblasts.
    Ukena TE; Borysenko JZ; Karnovsky MJ; Berlin RD
    J Cell Biol; 1974 Apr; 61(1):70-82. PubMed ID: 4132067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A correlation between membrane glycopeptide composition and losses in concanavalin A agglutinability induced by db-cAMP in Chinese hamster ovary cells.
    Veen JV; Noonan KD; Roberts RM
    Exp Cell Res; 1976 Dec; 103(2):405-13. PubMed ID: 187438
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane changes and adenosine triphosphate content in normal and malignant transformed cells.
    Vlodavsky I; Inbar M; Sachs L
    Proc Natl Acad Sci U S A; 1973 Jun; 70(6):1780-4. PubMed ID: 4352654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of cyclic AMP on the growth and morphology of a normal human fibroblast parent strain and its transformed progeny line.
    Dubpernell SA; Gavurin L
    Cell Differ; 1978 Dec; 7(6):375-86. PubMed ID: 216495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Surface morphology of normal and virus-transformed cells in suspended state and their concanavalin A agglutinability].
    Samil'chuk EI; Lapin BA
    Tsitologiia; 1982 Jul; 24(7):791-6. PubMed ID: 6291200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of trypsin treatment of mouse fibroblasts and their SV40-transformed cells on the agglutinability by several phytoagglutinins having different sugar-binding properties.
    Tomita M; Kurokawa T; Osawa T; Sakurai Y; Ukita T
    Gan; 1972 Apr; 63(2):269-71. PubMed ID: 4341804
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.