BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16550174)

  • 1. Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential.
    Huang CJ; Harootunian A; Maher MP; Quan C; Raj CD; McCormack K; Numann R; Negulescu PA; González JE
    Nat Biotechnol; 2006 Apr; 24(4):439-46. PubMed ID: 16550174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-channel drug screening galvanized.
    Bennett PB
    Nat Biotechnol; 2006 Apr; 24(4):415-6. PubMed ID: 16601722
    [No Abstract]   [Full Text] [Related]  

  • 3. Induction of pseudo-periodic oscillation in voltage-gated sodium channel properties is dependent on the duration of prolonged depolarization.
    Majumdar S; Foster G; Sikdar SK
    Eur J Neurosci; 2004 Jul; 20(1):127-43. PubMed ID: 15245486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence imaging of electrically stimulated cells.
    Burnett P; Robertson JK; Palmer JM; Ryan RR; Dubin AE; Zivin RA
    J Biomol Screen; 2003 Dec; 8(6):660-7. PubMed ID: 14711391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy.
    Vreugdenhil M; Hoogland G; van Veelen CW; Wadman WJ
    Eur J Neurosci; 2004 May; 19(10):2769-78. PubMed ID: 15147310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of sodium channel blockers by membrane potential measurements in cerebellar neurons: prediction of compound preference for the open/inactivated state.
    Kolok S; Nagy J; Szombathelyi Z; Tarnawa I
    Neurochem Int; 2006 Nov; 49(6):593-604. PubMed ID: 16777267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of voltage-gated ionic channels in cholinergic amacrine cells in the mouse retina.
    Kaneda M; Ito K; Morishima Y; Shigematsu Y; Shimoda Y
    J Neurophysiol; 2007 Jun; 97(6):4225-34. PubMed ID: 17428902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation of two distinct voltage-dependent sodium currents by group III metabotropic glutamate receptor activation in insect pacemaker neurons.
    Lavialle-Defaix C; Gautier H; Defaix A; Lapied B; Grolleau F
    J Neurophysiol; 2006 Nov; 96(5):2437-50. PubMed ID: 16899636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lead on voltage-gated sodium channels in rat hippocampal CA1 neurons.
    Gu Y; Wang L; Xiao C; Guo F; Ruan DY
    Neuroscience; 2005; 133(3):679-90. PubMed ID: 15896915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of voltage-gated channel currents in rat auditory cortex neurons by salicylate.
    Liu Y; Zhang H; Li X; Wang Y; Lu H; Qi X; Ma C; Liu J
    Neuropharmacology; 2007 Dec; 53(7):870-80. PubMed ID: 17920083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell-sparing electric field stimulation technique for high-throughput screening of voltage-gated ion channels.
    Bugianesi RM; Augustine PR; Azer K; Dufresne C; Herrington J; Kath GS; McManus OB; Napolitano CS; Rush A; Sachs J; Simpson N; Wismer MK; Kaczorowski GJ; Slaughter RS
    Assay Drug Dev Technol; 2006 Feb; 4(1):21-35. PubMed ID: 16506886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HMJ-53A accelerates slow inactivation gating of voltage-gated K+ channels in mouse neuroblastoma N2A cells.
    Chao CC; Shieh J; Kuo SC; Wu BT; Hour MJ; Leung YM
    Neuropharmacology; 2008 Jun; 54(7):1128-35. PubMed ID: 18406431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating embryonic stem-derived neural stem cells show a maturation-dependent pattern of voltage-gated sodium current expression and graded action potentials.
    Biella G; Di Febo F; Goffredo D; Moiana A; Taglietti V; Conti L; Cattaneo E; Toselli M
    Neuroscience; 2007 Oct; 149(1):38-52. PubMed ID: 17870247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of bound ts3 on voltage dependence of sodium channel transitions to and from inactivation and energetics of its unbinding.
    Campos FV; Beirão PS
    Cell Biochem Biophys; 2006; 44(3):424-30. PubMed ID: 16679529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances.
    Bar-Yehuda D; Korngreen A
    J Neurophysiol; 2008 Mar; 99(3):1127-36. PubMed ID: 18184885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium.
    Stocker PJ; Bennett ES
    J Gen Physiol; 2006 Mar; 127(3):253-65. PubMed ID: 16476705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee.
    Wüstenberg DG; Boytcheva M; Grünewald B; Byrne JH; Menzel R; Baxter DA
    J Neurophysiol; 2004 Oct; 92(4):2589-603. PubMed ID: 15190098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endotoxin reduces availability of voltage-gated human skeletal muscle sodium channels at depolarized membrane potentials.
    Haeseler G; Foadi N; Wiegand E; Ahrens J; Krampfl K; Dengler R; Leuwer M
    Crit Care Med; 2008 Apr; 36(4):1239-47. PubMed ID: 18379251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput ion-channel pharmacology: planar-array-based voltage clamp.
    Kiss L; Bennett PB; Uebele VN; Koblan KS; Kane SA; Neagle B; Schroeder K
    Assay Drug Dev Technol; 2003 Feb; 1(1 Pt 2):127-35. PubMed ID: 15090139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons.
    Segev D; Korngreen A
    Brain Res; 2007 Oct; 1173():27-35. PubMed ID: 17826751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.