These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 16550196)
1. Thymic microenvironments for T cell differentiation and selection. Ladi E; Yin X; Chtanova T; Robey EA Nat Immunol; 2006 Apr; 7(4):338-43. PubMed ID: 16550196 [TBL] [Abstract][Full Text] [Related]
2. Journey through the thymus: stromal guides for T-cell development and selection. Takahama Y Nat Rev Immunol; 2006 Feb; 6(2):127-35. PubMed ID: 16491137 [TBL] [Abstract][Full Text] [Related]
4. Lymphostromal interactions in thymic development and function. Anderson G; Jenkinson EJ Nat Rev Immunol; 2001 Oct; 1(1):31-40. PubMed ID: 11905812 [TBL] [Abstract][Full Text] [Related]
5. Thymic microenvironments, 3-D versus 2-D? van Ewijk W; Wang B; Hollander G; Kawamoto H; Spanopoulou E; Itoi M; Amagai T; Jiang YF; Germeraad WT; Chen WF; Katsura Y Semin Immunol; 1999 Feb; 11(1):57-64. PubMed ID: 9950752 [TBL] [Abstract][Full Text] [Related]
6. T-cell differentiation is influenced by thymic microenvironments. van Ewijk W Annu Rev Immunol; 1991; 9():591-615. PubMed ID: 1910689 [TBL] [Abstract][Full Text] [Related]
7. Thymic differentiation of TCR alpha beta(+) CD8 alpha alpha(+) IELs. Lambolez F; Kronenberg M; Cheroutre H Immunol Rev; 2007 Feb; 215():178-88. PubMed ID: 17291288 [TBL] [Abstract][Full Text] [Related]
8. Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T cell development. Benz C; Heinzel K; Bleul CC Eur J Immunol; 2004 Dec; 34(12):3652-63. PubMed ID: 15484191 [TBL] [Abstract][Full Text] [Related]
9. Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats. Leposavić G; Perisić M; Kosec D; Arsenović-Ranin N; Radojević K; Stojić-Vukanić Z; Pilipović I Brain Behav Immun; 2009 Feb; 23(2):294-304. PubMed ID: 19028560 [TBL] [Abstract][Full Text] [Related]
10. Developmental stages in the human thymus. Res P; Spits H Semin Immunol; 1999 Feb; 11(1):39-46. PubMed ID: 9952357 [TBL] [Abstract][Full Text] [Related]
11. CD44 promotes progenitor homing into the thymus and T cell maturation. Rajasagi M; Vitacolonna M; Benjak B; Marhaba R; Zöller M J Leukoc Biol; 2009 Feb; 85(2):251-61. PubMed ID: 18955544 [TBL] [Abstract][Full Text] [Related]
12. Development, organization and function of the thymic medulla in normal, immunodeficient or autoimmune mice. Naquet P; Naspetti M; Boyd R Semin Immunol; 1999 Feb; 11(1):47-55. PubMed ID: 9950751 [TBL] [Abstract][Full Text] [Related]
13. The zebrafish: a new model of T-cell and thymic development. Langenau DM; Zon LI Nat Rev Immunol; 2005 Apr; 5(4):307-17. PubMed ID: 15803150 [TBL] [Abstract][Full Text] [Related]
16. Complex regulation of CCR9 at multiple discrete stages of T cell development. Wurbel MA; Malissen B; Campbell JJ Eur J Immunol; 2006 Jan; 36(1):73-81. PubMed ID: 16342233 [TBL] [Abstract][Full Text] [Related]
17. Aire and Foxp3 expression in a particular microenvironment for T cell differentiation. Hansenne I; Louis C; Martens H; Dorban G; Charlet-Renard C; Peterson P; Geenen V Neuroimmunomodulation; 2009 Jan; 16(1):35-44. PubMed ID: 19077444 [TBL] [Abstract][Full Text] [Related]
18. Alteration of T-cell receptor repertoires during thymic T-cell development. Matsutani T; Ohmori T; Ogata M; Soga H; Yoshioka T; Suzuki R; Itoh T Scand J Immunol; 2006 Jul; 64(1):53-60. PubMed ID: 16784491 [TBL] [Abstract][Full Text] [Related]
19. Development and selection of T cells: how many subsets? How many rules? Kisielow P Arch Immunol Ther Exp (Warsz); 2003; 51(6):407-14. PubMed ID: 14692662 [TBL] [Abstract][Full Text] [Related]