These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16550538)

  • 1. Biomaterials and scaffolds for ligament tissue engineering.
    Ge Z; Yang F; Goh JC; Ramakrishna S; Lee EH
    J Biomed Mater Res A; 2006 Jun; 77(3):639-52. PubMed ID: 16550538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen tissue engineering: development of novel biomaterials and applications.
    Cen L; Liu W; Cui L; Zhang W; Cao Y
    Pediatr Res; 2008 May; 63(5):492-6. PubMed ID: 18427293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive scaffolds for bone and ligament tissue.
    Guarino V; Causa F; Ambrosio L
    Expert Rev Med Devices; 2007 May; 4(3):405-18. PubMed ID: 17488233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials.
    Kew SJ; Gwynne JH; Enea D; Abu-Rub M; Pandit A; Zeugolis D; Brooks RA; Rushton N; Best SM; Cameron RE
    Acta Biomater; 2011 Sep; 7(9):3237-47. PubMed ID: 21689792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Vascular biomaterials: from biomedical engineering to tissue engineering].
    Meddahi-Pellé A; Bataille I; Subra P; Letourneur D
    Med Sci (Paris); 2004; 20(6-7):679-84. PubMed ID: 15329819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current tissue engineering strategies in anterior cruciate ligament reconstruction.
    Leong NL; Petrigliano FA; McAllister DR
    J Biomed Mater Res A; 2014 May; 102(5):1614-24. PubMed ID: 23737190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of a tissue-engineered cornea: biomaterials and culture methods.
    Shah A; Brugnano J; Sun S; Vase A; Orwin E
    Pediatr Res; 2008 May; 63(5):535-44. PubMed ID: 18427299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering.
    Sahoo S; Cho-Hong JG; Siew-Lok T
    Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective.
    Laurencin CT; Khan Y; Kofron M; El-Amin S; Botchwey E; Yu X; Cooper JA
    Clin Orthop Relat Res; 2006 Jun; 447():221-36. PubMed ID: 16741478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering of the anterior cruciate ligament: the viscoelastic behavior and cell viability of a novel braid-twist scaffold.
    Freeman JW; Woods MD; Cromer DA; Wright LD; Laurencin CT
    J Biomater Sci Polym Ed; 2009; 20(12):1709-28. PubMed ID: 19723437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments.
    Seo YK; Yoon HH; Song KY; Kwon SY; Lee HS; Park YS; Park JK
    J Orthop Res; 2009 Apr; 27(4):495-503. PubMed ID: 18924141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface tissue engineering and the formulation of multiple-tissue systems.
    Lu HH; Jiang J
    Adv Biochem Eng Biotechnol; 2006; 102():91-111. PubMed ID: 17089787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study status of collagen-based biomaterials in drug release and tissue engineering].
    Wang B; Wang KY; Ye Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Mar; 18(2):112-4. PubMed ID: 15065409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.
    Hutmacher DW; Schantz JT; Lam CX; Tan KC; Lim TC
    J Tissue Eng Regen Med; 2007; 1(4):245-60. PubMed ID: 18038415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterial scaffolds in pediatric tissue engineering.
    Patel M; Fisher JP
    Pediatr Res; 2008 May; 63(5):497-501. PubMed ID: 18427294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    J Biomed Mater Res A; 2008 Jul; 86(1):1-12. PubMed ID: 18442111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering.
    Bosetti M; Boccafoschi F; Calarco A; Leigheb M; Gatti S; Piffanelli V; Peluso G; Cannas M
    J Biomater Sci Polym Ed; 2008; 19(9):1111-23. PubMed ID: 18727855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy.
    Coutu DL; Yousefi AM; Galipeau J
    J Cell Biochem; 2009 Oct; 108(3):537-46. PubMed ID: 19681040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of rapid prototyping techniques for tissue engineering purposes.
    Peltola SM; Melchels FP; Grijpma DW; Kellomäki M
    Ann Med; 2008; 40(4):268-80. PubMed ID: 18428020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.