These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16550616)

  • 1. Self-organization of oriented calcium carbonate/polymer composites: effects of a matrix peptide isolated from the exoskeleton of a crayfish.
    Sugawara A; Nishimura T; Yamamoto Y; Inoue H; Nagasawa H; Kato T
    Angew Chem Int Ed Engl; 2006 Apr; 45(18):2876-9. PubMed ID: 16550616
    [No Abstract]   [Full Text] [Related]  

  • 2. Significance of the N- and C-terminal regions of CAP-1, a cuticle calcification-associated peptide from the exoskeleton of the crayfish, for calcification.
    Inoue H; Ohira T; Nagasawa H
    Peptides; 2007 Mar; 28(3):566-73. PubMed ID: 17239990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel calcium-binding peptide from the cuticle of the crayfish, Procambarus clarkii.
    Inoue H; Ohira T; Ozaki N; Nagasawa H
    Biochem Biophys Res Commun; 2004 Jun; 318(3):649-54. PubMed ID: 15144887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and structural determination of a phosphorylated peptide with anti-calcification and chitin-binding activities in the exoskeleton of the crayfish, Procambarus clarkii.
    Inoue H; Ozaki N; Nagasawa H
    Biosci Biotechnol Biochem; 2001 Aug; 65(8):1840-8. PubMed ID: 11577725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium carbonate biomineralization utilizing a multifunctional β-sheet peptide template.
    Murai K; Higuchi M; Kinoshita T; Nagata K; Kato K
    Chem Commun (Camb); 2013 Nov; 49(85):9947-9. PubMed ID: 24040653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization.
    Kulak AN; Iddon P; Li Y; Armes SP; Cölfen H; Paris O; Wilson RM; Meldrum FC
    J Am Chem Soc; 2007 Mar; 129(12):3729-36. PubMed ID: 17335283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidic peptides acting as growth modifiers of calcite crystals.
    Volkmer D; Fricke M; Huber T; Sewald N
    Chem Commun (Camb); 2004 Aug; (16):1872-3. PubMed ID: 15306926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layered growth of crayfish gastrolith: about the stability of amorphous calcium carbonate and role of additives.
    Habraken WJ; Masic A; Bertinetti L; Al-Sawalmih A; Glazer L; Bentov S; Fratzl P; Sagi A; Aichmayer B; Berman A
    J Struct Biol; 2015 Jan; 189(1):28-36. PubMed ID: 25433275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids.
    Bentov S; Weil S; Glazer L; Sagi A; Berman A
    J Struct Biol; 2010 Aug; 171(2):207-15. PubMed ID: 20416381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscopically ordered polymer/CaCO3 hybrids prepared by using a liquid-crystalline template.
    Nishimura T; Ito T; Yamamoto Y; Yoshio M; Kato T
    Angew Chem Int Ed Engl; 2008; 47(15):2800-3. PubMed ID: 18307184
    [No Abstract]   [Full Text] [Related]  

  • 11. Protein mapping of calcium carbonate biominerals by immunogold.
    Marin F; Pokroy B; Luquet G; Layrolle P; De Groot K
    Biomaterials; 2007 May; 28(14):2368-77. PubMed ID: 17306364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubilization and chemical characterization of an insoluble matrix protein in the gastroliths of a crayfish, Procambarus clarkii.
    Ishii K; Tsutsui N; Watanabe T; Yanagisawa T; Nagasawa H
    Biosci Biotechnol Biochem; 1998 Feb; 62(2):291-6. PubMed ID: 9532785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a matrix protein in the gastroliths of the crayfish Procambarus clarkii.
    Ishii K; Yanagisawa T; Nagasawa H
    Biosci Biotechnol Biochem; 1996 Sep; 60(9):1479-82. PubMed ID: 8987597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization.
    Neira-Carrillo A; Acevedo DF; Miras MC; Barbero CA; Gebauer D; Cölfen H; Arias JL
    Langmuir; 2008 Nov; 24(21):12496-507. PubMed ID: 18839967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eggshell matrix protein mimics: designer peptides to induce the nucleation of calcite crystal aggregates in solution.
    Ajikumar PK; Lakshminarayanan R; Ong BT; Valiyaveettil S; Kini RM
    Biomacromolecules; 2003; 4(5):1321-6. PubMed ID: 12959601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the organic-mineral interface at the molecular level in model biominerals.
    Metzler RA; Kim IW; Delak K; Evans JS; Zhou D; Beniash E; Wilt F; Abrecht M; Chiou JW; Guo J; Coppersmith SN; Gilbert PU
    Langmuir; 2008 Mar; 24(6):2680-7. PubMed ID: 18251561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block-copolymer-controlled growth of CaCO3 microrings.
    Gao YX; Yu SH; Cong H; Jiang J; Xu AW; Dong WF; Cölfen H
    J Phys Chem B; 2006 Apr; 110(13):6432-6. PubMed ID: 16570935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of the N-Terminus of a Calcium Carbonate Precipitating Peptide Affects Calcium Carbonate Mineralization.
    Usui K; Yokota SI; Ozaki M; Sakashita S; Imai T; Tomizaki KY
    Protein Pept Lett; 2018; 25(1):42-47. PubMed ID: 29268680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On self-organized shell formation by bovine carbonic anhydrase II, and soluble protein extracted from regenerated shell.
    Lee SW; Park SB; Choi CS
    Micron; 2008 Dec; 39(8):1228-34. PubMed ID: 18501616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcrystalline composite particles of carbon nanotubes and calcium carbonate.
    Ford WE; Yasuda A; Wessels JM
    Langmuir; 2008 Apr; 24(7):3479-85. PubMed ID: 18275225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.