BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16551113)

  • 1. Quantitative structure-activity relationship based quantification of the impacts of enzyme-substrate binding on rates of peroxidase-mediated reactions of estrogenic phenolic chemicals.
    Colosi LM; Huang Q; Weber WJ
    J Am Chem Soc; 2006 Mar; 128(12):4041-7. PubMed ID: 16551113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a two-parameter quantitative structure-activity relationship as a legitimate tool for rational re-design of horseradish peroxidase.
    Colosi LM; Huang Q; Weber WJ
    Biotechnol Bioeng; 2007 Sep; 98(1):295-9. PubMed ID: 17657769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical kinetics and interactions involved in horseradish peroxidase-mediated oxidative polymerization of phenolic compounds.
    Cheng W; Harper WF
    Enzyme Microb Technol; 2012 Mar; 50(3):204-8. PubMed ID: 22305176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding ligninase-mediated reactions of endocrine disrupting chemicals in water: reaction rates and quantitative structure-activity relationships.
    Mao L; Colosi LM; Gao S; Huang Q
    Environ Sci Technol; 2011 Jul; 45(14):5966-72. PubMed ID: 21702433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxidase-mediated removal of endocrine disrupting compound mixtures from water.
    Zheng W; Colosi LM
    Chemosphere; 2011 Oct; 85(4):553-7. PubMed ID: 21741675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of natural and synthetic hormones by the horseradish peroxidase enzyme in wastewater.
    Auriol M; Filali-Meknassi Y; Tyagi RD; Adams CD
    Chemosphere; 2007 Aug; 68(10):1830-7. PubMed ID: 17498772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the binding and reactivity of plant and mammalian peroxidases to indole derivatives by computational docking.
    Hallingbäck HR; Gabdoulline RR; Wade RC
    Biochemistry; 2006 Mar; 45(9):2940-50. PubMed ID: 16503648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of phenols by horseradish peroxidase and lactoperoxidase compound II--kinetic considerations.
    Zahida MS; Deva W; Peerzada GM; Behere DV
    Indian J Biochem Biophys; 1998 Dec; 35(6):353-7. PubMed ID: 10412229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of horseradish peroxidase by phenoxyl radical attack.
    Huang Q; Huang Q; Pinto RA; Griebenow K; Schweitzer-Stenner R; Weber WJ
    J Am Chem Soc; 2005 Feb; 127(5):1431-7. PubMed ID: 15686375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling the substrate specificity of peroxidases: kinetics and thermodynamics of the reaction of horseradish peroxidase compound I with phenols and indole-3-acetic acids.
    Candeias LP; Folkes LK; Wardman P
    Biochemistry; 1997 Jun; 36(23):7081-5. PubMed ID: 9188707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horseradish peroxidase degrades lipid hydroperoxides and suppresses lipid peroxidation of polyunsaturated fatty acids in the presence of phenolic antioxidants.
    Shirasaka N; Ohnishi H; Sato K; Miyamoto R; Terashita T; Yoshizumi H
    J Biosci Bioeng; 2005 Dec; 100(6):653-6. PubMed ID: 16473775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA template-assisted modulation of horseradish peroxidase activity.
    Datta SG; Dou X; Shibley A; Datta B
    Int J Biol Macromol; 2012 Apr; 50(3):552-7. PubMed ID: 22305796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocapsulation of horseradish peroxidase (HRP) enhances enzymatic performance in removing phenolic compounds.
    Liu S; Huang B; Zheng G; Zhang P; Li J; Yang B; Chen Y; Liang L
    Int J Biol Macromol; 2020 May; 150():814-822. PubMed ID: 32035963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous enzymatic treatment of 4-bromophenol initiated by UV irradiation.
    Meizler A; Roddick FA; Porter NA
    Water Sci Technol; 2010; 62(9):2016-20. PubMed ID: 21045326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.
    Ling KQ; Li WS; Sayre LM
    J Am Chem Soc; 2008 Jan; 130(3):933-44. PubMed ID: 18163622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of rate constants for rapid peroxidase reactions.
    Goodwin DC; Yamazaki I; Aust SD; Grover TA
    Anal Biochem; 1995 Nov; 231(2):333-8. PubMed ID: 8594981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor.
    Auriol M; Filali-Meknassi Y; Adams CD; Tyagi RD; Noguerol TN; Piña B
    Chemosphere; 2008 Jan; 70(3):445-52. PubMed ID: 17897698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals.
    Hu JY; Aizawa T
    Water Res; 2003 Mar; 37(6):1213-22. PubMed ID: 12598185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and molecular orbital studies on the rate of oxidation of monosubstituted phenols and anilines by horseradish peroxidase compound II.
    Sakurada J; Sekiguchi R; Sato K; Hosoya T
    Biochemistry; 1990 May; 29(17):4093-8. PubMed ID: 2361133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.