These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16551277)

  • 41. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses.
    Malinauskas M; Zukauskas A; Bickauskaite G; Gadonas R; Juodkazis S
    Opt Express; 2010 May; 18(10):10209-21. PubMed ID: 20588875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal processes in red blood cells exposed to infrared laser tweezers (λ = 1064 nm).
    Krasnikov I; Seteikin A; Bernhardt I
    J Biophotonics; 2011 Mar; 4(3):206-12. PubMed ID: 20680975
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spinal cord injury in zebrafish induced by near-infrared femtosecond laser pulses.
    Dehnisch Ellström I; Spulber S; Hultin S; Norlin N; Ceccatelli S; Hultling C; Uhlén P
    J Neurosci Methods; 2019 Jan; 311():259-266. PubMed ID: 30389486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoscale hydroxyl radical generation from multiphoton ionization of tryptophan.
    Bisby RH; Crisostomo AG; Botchway SW; Parker AW
    Photochem Photobiol; 2009; 85(1):353-7. PubMed ID: 19161400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reflectance confocal microscopy for in vivo skin imaging.
    Calzavara-Pinton P; Longo C; Venturini M; Sala R; Pellacani G
    Photochem Photobiol; 2008; 84(6):1421-30. PubMed ID: 19067964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fundus near infrared fluorescence correlates with fundus near infrared reflectance.
    Weinberger AW; Lappas A; Kirschkamp T; Mazinani BA; Huth JK; Mohammadi B; Walter P
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3098-108. PubMed ID: 16799056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses.
    Wang BG; Riemann I; Schubert H; Halbhuber KJ; Koenig K
    Cell Tissue Res; 2007 Jun; 328(3):515-20. PubMed ID: 17468893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-color two-photon excitation using femtosecond laser pulses.
    Quentmeier S; Denicke S; Ehlers JE; Niesner RA; Gericke KH
    J Phys Chem B; 2008 May; 112(18):5768-73. PubMed ID: 18407711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel method of thermal activation and temperature measurement in the microscopic region around single living cells.
    Zeeb V; Suzuki M; Ishiwata S
    J Neurosci Methods; 2004 Oct; 139(1):69-77. PubMed ID: 15351523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Femtosecond two-photon high-resolution 3D imaging, spatial-volume rendering and microspectral characterization of immunolocalized MHC-II and mLangerin/CD207 antigens in the mouse epidermis.
    Tirlapur UK; Mulholland WJ; Bellhouse BJ; Kendall M; Cornhill JF; Cui Z
    Microsc Res Tech; 2006 Oct; 69(10):767-75. PubMed ID: 16941665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of near-infrared 35 fs laser microscope and its application to the detection of three- and four-photon fluorescence of organic microcrystals.
    Matsuda H; Fujimoto Y; Ito S; Nagasawa Y; Miyasaka H; Asahi T; Masuhara H
    J Phys Chem B; 2006 Jan; 110(3):1091-4. PubMed ID: 16471646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ablative targeting of fatty-tissue using a high-powered diode laser.
    O'Dey Dm; Prescher A; Poprawe R; Gaus S; Stanzel S; Pallua N
    Lasers Surg Med; 2008 Feb; 40(2):100-5. PubMed ID: 18306160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of a two-photon microscope and optimisation of illumination pulse duration.
    Soeller C; Cannell MB
    Pflugers Arch; 1996 Jul; 432(3):555-61. PubMed ID: 8766017
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Linear response of multiphoton reaction: three-photon cycloreversion of anthracene biplanemer in solution by intense femtosecond laser pulses.
    Yatsuhashi T; Nakahagi Y; Okamoto H; Nakashima N
    J Phys Chem A; 2010 Oct; 114(39):10475-80. PubMed ID: 20843073
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.
    Bantseev V; Youn HY
    Ann N Y Acad Sci; 2006 Dec; 1091():17-33. PubMed ID: 17341599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Applications of free-electron lasers in the biological and material sciences.
    Edwards GS; Allen SJ; Haglund RF; Nemanich RJ; Redlich B; Simon JD; Yang WC
    Photochem Photobiol; 2005; 81(4):711-35. PubMed ID: 15755193
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-photon imaging of the mammalian retina with ultrafast pulsing laser.
    Palczewska G; Stremplewski P; Suh S; Alexander N; Salom D; Dong Z; Ruminski D; Choi EH; Sears AE; Kern TS; Wojtkowski M; Palczewski K
    JCI Insight; 2018 Sep; 3(17):. PubMed ID: 30185665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring.
    Huang Y; Lui H; Zhao J; Wu Z; Zeng H
    Theranostics; 2017; 7(3):513-522. PubMed ID: 28255346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High efficiency beam splitter for multifocal multiphoton microscopy.
    Nielsen T; Fricke M; Hellweg D; Andresen P
    J Microsc; 2001 Mar; 201(Pt 3):368-76. PubMed ID: 11240852
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photo-infrared pulsed bio-modulation (PIPBM): a novel mechanism for the enhancement of physiologically reparative responses.
    Santana-Blank LA; Rodríguez-Santana E; Santana-Rodríguez KE
    Photomed Laser Surg; 2005 Aug; 23(4):416-24. PubMed ID: 16144487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.