BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16552057)

  • 1. Importance of nitric oxide synthase in the control of infection by Bacillus anthracis.
    Raines KW; Kang TJ; Hibbs S; Cao GL; Weaver J; Tsai P; Baillie L; Cross AS; Rosen GM
    Infect Immun; 2006 Apr; 74(4):2268-76. PubMed ID: 16552057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of superoxide in the germination of Bacillus anthracis endospores.
    Baillie L; Hibbs S; Tsai P; Cao GL; Rosen GM
    FEMS Microbiol Lett; 2005 Apr; 245(1):33-8. PubMed ID: 15796976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus anthracis endospores regulate ornithine decarboxylase and inducible nitric oxide synthase through ERK1/2 and p38 mitogen-activated protein kinases.
    Porasuphatana S; Cao GL; Tsai P; Tavakkoli F; Huwar T; Baillie L; Cross AS; Shapiro P; Rosen GM
    Curr Microbiol; 2010 Dec; 61(6):567-73. PubMed ID: 20440620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective role of Bacillus anthracis exosporium in macrophage-mediated killing by nitric oxide.
    Weaver J; Kang TJ; Raines KW; Cao GL; Hibbs S; Tsai P; Baillie L; Rosen GM; Cross AS
    Infect Immun; 2007 Aug; 75(8):3894-901. PubMed ID: 17502390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus anthracis-derived nitric oxide induces protein S-nitrosylation contributing to macrophage death.
    Chung MC; Narayanan A; Popova TG; Kashanchi F; Bailey CL; Popov SG
    Biochem Biophys Res Commun; 2013 Jan; 430(1):125-30. PubMed ID: 23178574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the mammalian arginase inhibitor 2(S)-amino-6-boronohexanoic acid on Bacillus anthracis arginase.
    Tsai P; Cao GL; Tomczuk B; Suzdak PD; Cross AS; Shapiro P; Rosen GM
    Curr Microbiol; 2012 Apr; 64(4):379-84. PubMed ID: 22271269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge.
    Banks DJ; Barnajian M; Maldonado-Arocho FJ; Sanchez AM; Bradley KA
    Cell Microbiol; 2005 Aug; 7(8):1173-85. PubMed ID: 16008584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The poly-γ-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule induces nitric oxide production via the platelet activating factor receptor signaling pathway.
    Lee HR; Jeon JH; Park OK; Chun JH; Park J; Rhie GE
    Mol Immunol; 2015 Dec; 68(2 Pt A):244-52. PubMed ID: 26350415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin labelling of Bacillus anthracis endospores: a model for in vivo tracking by EPR imaging.
    Tsai P; Cao GL; Merkel TJ; Rosen GM
    Free Radic Res; 2008 Jan; 42(1):49-56. PubMed ID: 18324523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginase modulates Salmonella induced nitric oxide production in RAW264.7 macrophages and is required for Salmonella pathogenesis in mice model of infection.
    Lahiri A; Das P; Chakravortty D
    Microbes Infect; 2008; 10(10-11):1166-74. PubMed ID: 18625332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early Bacillus anthracis-macrophage interactions: intracellular survival survival and escape.
    Dixon TC; Fadl AA; Koehler TM; Swanson JA; Hanna PC
    Cell Microbiol; 2000 Dec; 2(6):453-63. PubMed ID: 11207600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytokine response to infection with Bacillus anthracis spores.
    Pickering AK; Osorio M; Lee GM; Grippe VK; Bray M; Merkel TJ
    Infect Immun; 2004 Nov; 72(11):6382-9. PubMed ID: 15501768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus anthracis spores influence ATP synthase activity in murine macrophages.
    Seo GM; Jung KH; Kim SJ; Kim JC; Yoon JW; Oh KK; Lee JH; Chai YG
    J Microbiol Biotechnol; 2008 Apr; 18(4):778-83. PubMed ID: 18467876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage-enhanced germination of Bacillus anthracis endospores requires gerS.
    Ireland JA; Hanna PC
    Infect Immun; 2002 Oct; 70(10):5870-2. PubMed ID: 12228320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis.
    Ramachandran G; Gade P; Tsai P; Lu W; Kalvakolanu DV; Rosen GM; Cross AS
    Pathog Dis; 2015 Dec; 73(9):ftv080. PubMed ID: 26424808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity.
    Williams B; López-García M; Gillard JJ; Laws TR; Lythe G; Carruthers J; Finnie T; Molina-París C
    Front Immunol; 2021; 12():688257. PubMed ID: 34497601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of Bacillus anthracis spores in murine primary macrophages.
    Hu H; Sa Q; Koehler TM; Aronson AI; Zhou D
    Cell Microbiol; 2006 Oct; 8(10):1634-42. PubMed ID: 16984418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress.
    Cybulski RJ; Sanz P; Alem F; Stibitz S; Bull RL; O'Brien AD
    Infect Immun; 2009 Jan; 77(1):274-85. PubMed ID: 18955476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of a model of in vivo macrophage depletion to study the role of macrophages during infection with Bacillus anthracis spores.
    Cote CK; Rea KM; Norris SL; van Rooijen N; Welkos SL
    Microb Pathog; 2004 Oct; 37(4):169-75. PubMed ID: 15458777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus anthracis genomic DNA enhances lethal toxin-induced cytotoxicity through TNF-α production.
    Jeon JH; Kim YH; Choi MK; Kim KA; Lee HR; Jang J; Kim YR; Chun JH; Eo SK; Kim TS; Rhie GE
    BMC Microbiol; 2014 Dec; 14():300. PubMed ID: 25472474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.