These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 16552094)

  • 1. Quantification of the fluence error in the motion-compensated dynamic MLC (DMLC) technique for delivering intensity-modulated radiotherapy (IMRT).
    Webb S
    Phys Med Biol; 2006 Apr; 51(7):L17-21. PubMed ID: 16552094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy to minimize errors from differential intrafraction organ motion using a single configuration for a 'breathing' multileaf collimator.
    Webb S; Binnie DM
    Phys Med Biol; 2006 Sep; 51(18):4517-31. PubMed ID: 16953040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitations of a simple technique for movement compensation via movement-modified fluence profiles.
    Webb S
    Phys Med Biol; 2005 Jul; 50(14):N155-61. PubMed ID: 16177503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view.
    McQuaid D; Webb S
    Phys Med Biol; 2006 Oct; 51(19):4819-39. PubMed ID: 16985273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importing measured field fluences into the treatment planning system to validate a breathing synchronized DMLC-IMRT irradiation technique.
    Verellen D; Tournel K; Linthout N; Soete G; Wauters T; Storme G
    Radiother Oncol; 2006 Mar; 78(3):332-8. PubMed ID: 16533540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking.
    Sawant A; Smith RL; Venkat RB; Santanam L; Cho B; Poulsen P; Cattell H; Newell LJ; Parikh P; Keall PJ
    Int J Radiat Oncol Biol Phys; 2009 Jun; 74(2):575-82. PubMed ID: 19327907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion.
    Webb S
    Phys Med Biol; 2008 Jan; 53(1):1-21. PubMed ID: 18182684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of real-time internal electromagnetic position monitoring coupled with dynamic multileaf collimator tracking: an intensity-modulated radiation therapy feasibility study.
    Smith RL; Sawant A; Santanam L; Venkat RB; Newell LJ; Cho BC; Poulsen P; Catell H; Keall PJ; Parikh PJ
    Int J Radiat Oncol Biol Phys; 2009 Jul; 74(3):868-75. PubMed ID: 19394159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm.
    Suh Y; Sawant A; Venkat R; Keall PJ
    Phys Med Biol; 2009 Jun; 54(12):3821-35. PubMed ID: 19478383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new way of adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion.
    Webb S; Bortfeld T
    Phys Med Biol; 2008 Sep; 53(18):5177-91. PubMed ID: 18728307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic delivery of IMRT using an independent collimator: a model study.
    Zhang Y; Hu Y; Ma L; Dai J
    Phys Med Biol; 2009 Apr; 54(8):2527-39. PubMed ID: 19336843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system.
    Keall PJ; Cattell H; Pokhrel D; Dieterich S; Wong KH; Murphy MJ; Vedam SS; Wijesooriya K; Mohan R
    Int J Radiat Oncol Biol Phys; 2006 Aug; 65(5):1579-84. PubMed ID: 16863935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement in dose homogeneity with electronic tissue compensation over IMRT and conventional RT in whole brain radiotherapy.
    Goyal S; Yue NJ; Millevoi R; Kagan E; Haffty B; Narra V
    Radiother Oncol; 2008 Aug; 88(2):196-201. PubMed ID: 18362037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect on IMRT conformality of elastic tissue movement and a practical suggestion for movement compensation via the modified dynamic multileaf collimator (dMLC) technique.
    Webb S
    Phys Med Biol; 2005 Mar; 50(6):1163-90. PubMed ID: 15798315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of organ motion effects on the effective fluences for liver IMRT.
    Kuo HC; Chuang KS; Liu WS; Wu A; Lalonde R
    Phys Med Biol; 2007 Jul; 52(14):4227-44. PubMed ID: 17664605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking 'differential organ motion' with a 'breathing' multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy.
    McClelland JR; Webb S; McQuaid D; Binnie DM; Hawkes DJ
    Phys Med Biol; 2007 Aug; 52(16):4805-26. PubMed ID: 17671337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the effect of respiratory motion on lung tumour dosimetry with the aid of a breathing phantom with deforming lungs.
    Nioutsikou E; Richard N Symonds-Tayler J; Bedford JL; Webb S
    Phys Med Biol; 2006 Jul; 51(14):3359-74. PubMed ID: 16825735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.
    Jiang R; Barnett RB; Chow JC; Chen JZ
    Phys Med Biol; 2007 Mar; 52(5):1469-84. PubMed ID: 17301465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DMLC IMRT delivery to targets moving in 2D in Beam's eye view.
    Rangaraj D; Palaniswaamy G; Papiez L
    Med Phys; 2008 Aug; 35(8):3765-78. PubMed ID: 18777936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel unidirectional intensity map segmentation method for step-and-shoot IMRT delivery with segment shape control.
    Artacho JM; Mellado X; Tobías G; Cruz S; Hernández M
    Phys Med Biol; 2009 Feb; 54(3):569-89. PubMed ID: 19124955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.