BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16552137)

  • 1. Absorption spectroscopy of three-dimensional bacteriorhodopsin crystals at cryogenic temperatures: effects of altered hydration.
    Portuondo-Campa E; Schenkl S; Dolder M; Chergui M; Landau EM; Haacke S
    Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):368-74. PubMed ID: 16552137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase.
    Borshchevskiy V; Efremov R; Moiseeva E; Büldt G; Gordeliy V
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):26-32. PubMed ID: 20057046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
    Li H; Chen DL; Zhong S; Xu B; Han BS; Hu KS
    J Phys Chem B; 2005 Jun; 109(22):11273-8. PubMed ID: 16852376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC; Ishikura T; Yamato T
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies.
    Takeda K; Sato H; Hino T; Kono M; Fukuda K; Sakurai I; Okada T; Kouyama T
    J Mol Biol; 1998 Oct; 283(2):463-74. PubMed ID: 9769218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between structure, dynamics and function of hydrated purple membrane investigated by neutron scattering and dielectric spectroscopy.
    Buchsteiner A; Lechner RE; Hauss T; Dencher NA
    J Mol Biol; 2007 Aug; 371(4):914-23. PubMed ID: 17599349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001.
    Barnett SM; Dracheva S; Hendler R; Levin IW
    Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally relevant coupled dynamic profile of bacteriorhodopsin and lipids in purple membranes.
    Kamihira M; Watts A
    Biochemistry; 2006 Apr; 45(13):4304-13. PubMed ID: 16566605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
    Yoshimura K; Kouyama T
    J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin.
    Gordeliy VI; Schlesinger R; Efremov R; Büldt G; Heberle J
    Methods Mol Biol; 2003; 228():305-16. PubMed ID: 12824562
    [No Abstract]   [Full Text] [Related]  

  • 12. X-ray diffraction from a single layer of purple membrane at the air/water interface.
    Verclas SA; Howes PB; Kjaer K; Wurlitzer A; Weygand M; Büldt G; Dencher NA; Lösche M
    J Mol Biol; 1999 Apr; 287(5):837-43. PubMed ID: 10222193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid location in deoxycholate-treated purple membrane at 2.6 A.
    Grigorieff N; Beckmann E; Zemlin F
    J Mol Biol; 1995 Dec; 254(3):404-15. PubMed ID: 7490759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization of bacteriorhodopsin solubilized by a tripod amphiphile.
    Theisen MJ; Potocky TB; McQuade DT; Gellman SH; Chiu ML
    Biochim Biophys Acta; 2005 Aug; 1751(2):213-6. PubMed ID: 15963773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine.
    Möller C; Büldt G; Dencher NA; Engel A; Müller DJ
    J Mol Biol; 2000 Aug; 301(4):869-79. PubMed ID: 10966792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure.
    Faham S; Bowie JU
    J Mol Biol; 2002 Feb; 316(1):1-6. PubMed ID: 11829498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detergent-free membrane protein crystallization.
    Nollert P; Royant A; Pebay-Peyroula E; Landau EM
    FEBS Lett; 1999 Aug; 457(2):205-8. PubMed ID: 10471779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the integral membrane proton pump, bacteriorhodopsin, by purple membrane lipids of Halobacterium halobium.
    Mukhopadhyay AK; Dracheva S; Bose S; Hendler RW
    Biochemistry; 1996 Jul; 35(28):9245-52. PubMed ID: 8703930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial dehydration of the retinal binding pocket and proof for photochemical deprotonation of the retinal Schiff base in bicelle bacteriorhodopsin crystals.
    Sanii LS; El-Sayed MA
    Photochem Photobiol; 2005; 81(6):1356-60. PubMed ID: 16097857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.