These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 16552137)
21. Lipidic cubic phases as matrices for membrane protein crystallization. Nollert P Methods; 2004 Nov; 34(3):348-53. PubMed ID: 15325652 [TBL] [Abstract][Full Text] [Related]
22. Rational design of lipid for membrane protein crystallization. Misquitta Y; Cherezov V; Havas F; Patterson S; Mohan JM; Wells AJ; Hart DJ; Caffrey M J Struct Biol; 2004 Nov; 148(2):169-75. PubMed ID: 15477097 [TBL] [Abstract][Full Text] [Related]
23. Dynamical heterogeneity of specific amino acids in bacteriorhodopsin. Wood K; Grudinin S; Kessler B; Weik M; Johnson M; Kneller GR; Oesterhelt D; Zaccai G J Mol Biol; 2008 Jul; 380(3):581-91. PubMed ID: 18565346 [TBL] [Abstract][Full Text] [Related]
24. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin. Farooq A Biochemistry; 1998 Oct; 37(43):15170-6. PubMed ID: 9790681 [TBL] [Abstract][Full Text] [Related]
25. Compositional heterogeneity reflects partial dehydration in three-dimensional crystals of bacteriorhodopsin. Schenkl S; Portuondo E; Zgrablic G; Chergui M; Suske W; Dolder M; Landau EM; Haacke S J Mol Biol; 2003 Jun; 329(4):711-9. PubMed ID: 12787672 [TBL] [Abstract][Full Text] [Related]
26. Combination of extended X-ray absorption fine structure spectroscopy with lipidic cubic phases for the study of cation binding in bacteriorhodopsin. Perálvarez-Marín A; Sepulcre F; Márquez M; Proietti MG; Padrós E Eur Biophys J; 2011 Aug; 40(8):1007-12. PubMed ID: 21667310 [TBL] [Abstract][Full Text] [Related]
27. Electron crystallography of bacteriorhodopsin with millisecond time resolution. Subramaniam S; Henderson R J Struct Biol; 1999 Dec; 128(1):19-25. PubMed ID: 10600554 [TBL] [Abstract][Full Text] [Related]
28. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy. Lórenz-Fonfría VA; Furutani Y; Kandori H Biochemistry; 2008 Apr; 47(13):4071-81. PubMed ID: 18321068 [TBL] [Abstract][Full Text] [Related]
29. Existence of two L photointermediates of halorhodopsin from Halobacterium salinarium, differing in their protein and water FTIR bands. Chon YS; Kandori H; Sasaki J; Lanyi JK; Needleman R; Maeda A Biochemistry; 1999 Jul; 38(29):9449-55. PubMed ID: 10413521 [TBL] [Abstract][Full Text] [Related]
30. Expression, purification, and structural characterization of the bacteriorhodopsin-aspartyl transcarbamylase fusion protein. Turner GJ; Miercke LJ; Mitra AK; Stroud RM; Betlach MC; Winter-Vann A Protein Expr Purif; 1999 Nov; 17(2):324-38. PubMed ID: 10545282 [TBL] [Abstract][Full Text] [Related]
31. It's not just a phase: crystallization and X-ray structure determination of bacteriorhodopsin in lipidic cubic phases. Gouaux E Structure; 1998 Jan; 6(1):5-10. PubMed ID: 9493262 [TBL] [Abstract][Full Text] [Related]
32. Assessing the functionality of a membrane protein in a three-dimensional crystal. Heberle J; Büldt G; Koglin E; Rosenbusch JP; Landau EM J Mol Biol; 1998 Aug; 281(4):587-92. PubMed ID: 9710532 [TBL] [Abstract][Full Text] [Related]
33. Charting the surfaces of the purple membrane. Heymann JB; Müller DJ; Landau EM; Rosenbusch JP; Pebay-Peyroula E; Büldt G; Engel A J Struct Biol; 1999 Dec; 128(3):243-9. PubMed ID: 10633063 [TBL] [Abstract][Full Text] [Related]
34. Bacteriorhodopsin photocycle kinetics analyzed by the maximum entropy method. Lukács A; Papp E J Photochem Photobiol B; 2004 Dec; 77(1-3):1-16. PubMed ID: 15542357 [TBL] [Abstract][Full Text] [Related]
35. A quantitative XANES analysis of the calcium high-affinity binding site of the purple membrane. Sepulcre F; Proietti MG; Benfatto M; Della Longa S; García J; Padrós E Biophys J; 2004 Jul; 87(1):513-20. PubMed ID: 15240484 [TBL] [Abstract][Full Text] [Related]
36. Culture temperature affects the molecular motion of bacteriorhodopsin within the purple membrane. Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N Chem Pharm Bull (Tokyo); 1996 Mar; 44(3):473-6. PubMed ID: 8882448 [TBL] [Abstract][Full Text] [Related]
37. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. Müller DJ; Sass HJ; Müller SA; Büldt G; Engel A J Mol Biol; 1999 Feb; 285(5):1903-9. PubMed ID: 9925773 [TBL] [Abstract][Full Text] [Related]
38. Structural and orientational constraints of bacteriorhodopsin in purple membranes determined by oriented-sample solid-state NMR spectroscopy. Kamihira M; Vosegaard T; Mason AJ; Straus SK; Nielsen NC; Watts A J Struct Biol; 2005 Jan; 149(1):7-16. PubMed ID: 15629653 [TBL] [Abstract][Full Text] [Related]
39. Direct observation of different surface structures on high-resolution images of native halorhodopsin. Persike N; Pfeiffer M; Guckenberger R; Radmacher M; Fritz M J Mol Biol; 2001 Jul; 310(4):773-80. PubMed ID: 11453686 [TBL] [Abstract][Full Text] [Related]
40. Studies on the temperature effect on bacteriorhodopsin of purple and blue membrane by fluorescence and absorption spectroscopy. Cheng LY; Zhang Y; Liu SG; Hu KS; Ruan KC Acta Biochim Biophys Sin (Shanghai); 2006 Oct; 38(10):691-6. PubMed ID: 17033715 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]