BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16552141)

  • 1. A method for finding candidate conformations for molecular replacement using relative rotation between domains of a known structure.
    Jeong JI; Lattman EE; Chirikjian GS
    Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):398-409. PubMed ID: 16552141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of conformational motions and residue fluctuations for Escherichia coli ribose-binding protein revealed with elastic network models.
    Li HY; Cao ZX; Zhao LL; Wang JH
    Int J Mol Sci; 2013 May; 14(5):10552-69. PubMed ID: 23698778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal mode-based fitting of atomic structure into electron density maps: application to sarcoplasmic reticulum Ca-ATPase.
    Hinsen K; Reuter N; Navaza J; Stokes DL; Lacapère JJ
    Biophys J; 2005 Feb; 88(2):818-27. PubMed ID: 15542555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transconformations of the SERCA1 Ca-ATPase: a normal mode study.
    Reuter N; Hinsen K; Lacapère JJ
    Biophys J; 2003 Oct; 85(4):2186-97. PubMed ID: 14507684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping open and closed forms of FitE: a group III periplasmic binding protein.
    Shi R; Proteau A; Wagner J; Cui Q; Purisima EO; Matte A; Cygler M
    Proteins; 2009 May; 75(3):598-609. PubMed ID: 19004000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1.7 A X-ray structure of the periplasmic ribose receptor from Escherichia coli.
    Mowbray SL; Cole LB
    J Mol Biol; 1992 May; 225(1):155-75. PubMed ID: 1583688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural model for the catalytic cycle of Ca(2+)-ATPase.
    Xu C; Rice WJ; He W; Stokes DL
    J Mol Biol; 2002 Feb; 316(1):201-11. PubMed ID: 11829513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAXSDom: Modeling multidomain protein structures using small-angle X-ray scattering data.
    Hou J; Adhikari B; Tanner JJ; Cheng J
    Proteins; 2020 Jun; 88(6):775-787. PubMed ID: 31860156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the molecular-replacement problem in the presence of merohedral twinning: structure of the N-terminal half-molecule of human lactoferrin.
    Breyer WA; Kingston RL; Anderson BF; Baker EN
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):129-38. PubMed ID: 10089403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a domain-opened mutant (R121D) of the human lactoferrin N-lobe refined from a merohedrally twinned crystal form.
    Jameson GB; Anderson BF; Breyer WA; Day CL; Tweedie JW; Baker EN
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):955-62. PubMed ID: 12037297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the L-leucine-binding protein refined at 2.4 A resolution and comparison with the Leu/Ile/Val-binding protein structure.
    Sack JS; Trakhanov SD; Tsigannik IH; Quiocho FA
    J Mol Biol; 1989 Mar; 206(1):193-207. PubMed ID: 2649683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Likelihood-enhanced fast rotation functions.
    Storoni LC; McCoy AJ; Read RJ
    Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):432-8. PubMed ID: 14993666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 A resolution and structural basis of its dual role.
    Khan JA; Kumar P; Paramasivam M; Yadav RS; Sahani MS; Sharma S; Srinivasan A; Singh TP
    J Mol Biol; 2001 Jun; 309(3):751-61. PubMed ID: 11397094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribose and glucose-galactose receptors. Competitors in bacterial chemotaxis.
    Mowbray SL
    J Mol Biol; 1992 Sep; 227(2):418-40. PubMed ID: 1328650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholamban binds in a compact and ordered conformation to the Ca-ATPase.
    Li J; Xiong Y; Bigelow DJ; Squier TC
    Biochemistry; 2004 Jan; 43(2):455-63. PubMed ID: 14717600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular replacement solution of the structure of apolactoferrin, a protein displaying large-scale conformational change.
    Norris GE; Anderson BF; Baker EN
    Acta Crystallogr B; 1991 Dec; 47 ( Pt 6)():998-1004. PubMed ID: 1772635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium activation of the Ca-ATPase enhances conformational heterogeneity between nucleotide binding and phosphorylation domains.
    Chen B; Squier TC; Bigelow DJ
    Biochemistry; 2004 Apr; 43(14):4366-74. PubMed ID: 15065881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase.
    Li G; Cui Q
    Biophys J; 2002 Nov; 83(5):2457-74. PubMed ID: 12414680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CATHEDRAL: a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures.
    Redfern OC; Harrison A; Dallman T; Pearl FM; Orengo CA
    PLoS Comput Biol; 2007 Nov; 3(11):e232. PubMed ID: 18052539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dealing with structural variability in molecular replacement and crystallographic refinement through normal-mode analysis.
    Delarue M
    Acta Crystallogr D Biol Crystallogr; 2008 Jan; 64(Pt 1):40-8. PubMed ID: 18094466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.