These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16552447)

  • 1. Anti-stokes Raman study of vibrational cooling dynamics in the primary photochemistry of rhodopsin.
    Kim JE; Mathies RA
    J Phys Chem A; 2002 Sep; 106(37):8508-15. PubMed ID: 16552447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman Structural Evidence that the Cis-to-Trans Isomerization in Rhodopsin Occurs in Femtoseconds.
    Kim JE; McCamant DW; Zhu L; Mathies RA
    J Phys Chem B; 2001 Feb; 105(6):1240-9. PubMed ID: 16755302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational Relaxation in beta-Carotene Probed by Picosecond Stokes and Anti-Stokes Resonance Raman Spectroscopy.
    McCamant DW; Kim JE; Mathies RA
    J Phys Chem A; 2002 Jun; 106(25):6030-8. PubMed ID: 17235377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational spectrum of the lumi intermediate in the room temperature rhodopsin photo-reaction.
    Ujj L; Jäger F; Atkinson GH
    Biophys J; 1998 Mar; 74(3):1492-501. PubMed ID: 9512045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bathorhodopsin structure in the room-temperature rhodopsin photosequence: picosecond time-resolved coherent anti-Stokes Raman scattering.
    Popp A; Ujj L; Atkinson GH
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):372-6. PubMed ID: 8552641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking Ultrafast Vibrational Cooling during Excited-State Proton Transfer Reaction with Anti-Stokes and Stokes Femtosecond Stimulated Raman Spectroscopy.
    Liu W; Tang L; Oscar BG; Wang Y; Chen C; Fang C
    J Phys Chem Lett; 2017 Mar; 8(5):997-1003. PubMed ID: 28195486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling reaction routes from rhodopsin to bathorhodopsin.
    Khrenova MG; Bochenkova AV; Nemukhin AV
    Proteins; 2010 Feb; 78(3):614-22. PubMed ID: 19787771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling vibrational coherence in the primary rhodopsin photoproduct.
    Weingart O; Garavelli M
    J Chem Phys; 2012 Dec; 137(22):22A523. PubMed ID: 23249060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excited State Structural Evolution of a GFP Single-Site Mutant Tracked by Tunable Femtosecond-Stimulated Raman Spectroscopy.
    Tang L; Zhu L; Taylor MA; Wang Y; Remington SJ; Fang C
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30200474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.
    Weidlich O; Ujj L; Jäger F; Atkinson GH
    Biophys J; 1997 May; 72(5):2329-41. PubMed ID: 9129836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity.
    Hoffman DP; Mathies RA
    Acc Chem Res; 2016 Apr; 49(4):616-25. PubMed ID: 27003235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrationally coherent photochemistry in the femtosecond primary event of vision.
    Wang Q; Schoenlein RW; Peteanu LA; Mathies RA; Shank CV
    Science; 1994 Oct; 266(5184):422-4. PubMed ID: 7939680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoisomerization in rhodopsin.
    Kandori H; Shichida Y; Yoshizawa T
    Biochemistry (Mosc); 2001 Nov; 66(11):1197-209. PubMed ID: 11743865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct.
    Yan EC; Ganim Z; Kazmi MA; Chang BS; Sakmar TP; Mathies RA
    Biochemistry; 2004 Aug; 43(34):10867-76. PubMed ID: 15323547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of isomerization of rhodopsin studied by use of 11-cis-locked rhodopsin analogues excited with a picosecond laser pulse.
    Kandori H; Matuoka S; Shichida Y; Yoshizawa T; Ito M; Tsukida K; Balogh-Nair V; Nakanishi K
    Biochemistry; 1989 Jul; 28(15):6460-7. PubMed ID: 2790007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy.
    Oscar BG; Chen C; Liu W; Zhu L; Fang C
    J Phys Chem A; 2017 Jul; 121(29):5428-5441. PubMed ID: 28678500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast spectroscopy of the visual pigment rhodopsin.
    Yan M; Manor D; Weng G; Chao H; Rothberg L; Jedju TM; Alfano RR; Callender RH
    Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9809-12. PubMed ID: 1946406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution.
    Takeuchi S; Tahara T
    J Phys Chem A; 2005 Nov; 109(45):10199-207. PubMed ID: 16833312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local vibrational coherences drive the primary photochemistry of vision.
    Johnson PJ; Halpin A; Morizumi T; Prokhorenko VI; Ernst OP; Miller RJ
    Nat Chem; 2015 Dec; 7(12):980-6. PubMed ID: 26587713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin.
    Smitienko OA; Mozgovaya MN; Shelaev IV; Gostev FE; Feldman TB; Nadtochenko VA; Sarkisov OM; Ostrovsky MA
    Biochemistry (Mosc); 2010 Jan; 75(1):25-35. PubMed ID: 20331421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.