These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16553013)

  • 21. Influence of somatosensory input on paroxysmal activity in benign rolandic epilepsy with 'extreme somatosensory evoked potentials'.
    Manganotti P; Miniussi C; Santorum E; Tinazzi M; Bonato C; Marzi CA; Fiaschi A; Dalla Bernardina B; Zanette G
    Brain; 1998 Apr; 121 ( Pt 4)():647-58. PubMed ID: 9577391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electric stimulation of the tuberomamillary nucleus affects epileptic activity and sleep-wake cycle in a genetic absence epilepsy model.
    Blik V
    Epilepsy Res; 2015 Jan; 109():119-25. PubMed ID: 25524851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of directional coupling underlying spike-wave discharges.
    Sysoeva MV; Lüttjohann A; van Luijtelaar G; Sysoev IV
    Neuroscience; 2016 Feb; 314():75-89. PubMed ID: 26633265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats.
    Kozák G; Földi T; Berényi A
    eNeuro; 2020; 7(1):. PubMed ID: 31862790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Age-related changes of cortical excitability in subjects with sleep-enhanced centrotemporal spikes: a somatosensory evoked potential study.
    Ferri R; Del Gracco S; Elia M; Musumeci SA
    Clin Neurophysiol; 2000 Apr; 111(4):591-9. PubMed ID: 10727909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global and focal aspects of absence epilepsy: the contribution of genetic models.
    van Luijtelaar G; Sitnikova E
    Neurosci Biobehav Rev; 2006; 30(7):983-1003. PubMed ID: 16725200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences between primary somatosensory cortex- and vertex-derived somatosensory-evoked potentials in the rat.
    Stienen PJ; van den Brom WE; de Groot HN; Venker-van Haagen AJ; Hellebrekers LJ
    Brain Res; 2004 Dec; 1030(2):256-66. PubMed ID: 15571674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prenatal protein malnutrition alters behavioral state modulation of inhibition and facilitation in the dentate gyrus.
    Austin KB; Beiswanger C; Bronzino JD; Austin-Lafrance RJ; Galler JR; Morgane PJ
    Brain Res Bull; 1992 Feb; 28(2):245-55. PubMed ID: 1596745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Somatosensory evoked potentials and magnetic fields elicited by tactile stimulation of the hand during active and quiet sleep in newborns.
    Pihko E; Lauronen L; Wikström H; Taulu S; Nurminen J; Kivitie-Kallio S; Okada Y
    Clin Neurophysiol; 2004 Feb; 115(2):448-55. PubMed ID: 14744587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological properties of raphe magnus neurons during sleep and waking.
    Leung CG; Mason P
    J Neurophysiol; 1999 Feb; 81(2):584-95. PubMed ID: 10036262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkey.
    Cauller LJ; Kulics AT
    Exp Brain Res; 1988; 72(3):584-92. PubMed ID: 3234504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spike-wave discharges in absence epilepsy: segregation of electrographic components reveals distinct pathways of seizure activity.
    Terlau J; Yang JW; Khastkhodaei Z; Seidenbecher T; Luhmann HJ; Pape HC; Lüttjohann A
    J Physiol; 2020 Jun; 598(12):2397-2414. PubMed ID: 32144956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo.
    Werk CM; Harbour VL; Chapman CA
    Neuroscience; 2005; 131(4):793-800. PubMed ID: 15749334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conditioned modification of viscerosensory evoked potentials during sleep and wakefulness in cats.
    Kukorelli T; Juhász G; Adám G
    Acta Physiol Hung; 1983; 61(4):247-58. PubMed ID: 6650191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research.
    Gobbo D; Scheller A; Kirchhoff F
    Front Neurol; 2021; 12():661408. PubMed ID: 34177766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats.
    Pinault D; Slézia A; Acsády L
    J Physiol; 2006 Jul; 574(Pt 1):209-27. PubMed ID: 16627566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local functional state differences between rat cortical columns.
    Rector DM; Topchiy IA; Carter KM; Rojas MJ
    Brain Res; 2005 Jun; 1047(1):45-55. PubMed ID: 15882842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats.
    Lee MG; Manns ID; Alonso A; Jones BE
    J Neurophysiol; 2004 Aug; 92(2):1182-98. PubMed ID: 15028746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis.
    Kostopoulos GK
    Clin Neurophysiol; 2000 Sep; 111 Suppl 2():S27-38. PubMed ID: 10996552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of sleep spindles and spike and wave discharges using a novel method for the calculation of field potentials in rats.
    Sargsyan A; Sitnikova E; Melkonyan A; Mkrtchian H; van Luijtelaar G
    J Neurosci Methods; 2007 Aug; 164(1):161-76. PubMed ID: 17531326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.