These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 16553062)

  • 1. Adaptive automation of human-machine system information-processing functions.
    Kaber DB; Wright MC; Prinzel LJ; Clamann MP
    Hum Factors; 2005; 47(4):730-41. PubMed ID: 16553062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of automation of information-processing functions on teamwork.
    Wright MC; Kaber DB
    Hum Factors; 2005; 47(1):50-66. PubMed ID: 15960086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of imperfect automation on decision making in a simulated command and control task.
    Rovira E; McGarry K; Parasuraman R
    Hum Factors; 2007 Feb; 49(1):76-87. PubMed ID: 17315845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automation in future air traffic management: effects of decision aid reliability on controller performance and mental workload.
    Metzger U; Parasuraman R
    Hum Factors; 2005; 47(1):35-49. PubMed ID: 15960085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Level of automation effects on performance, situation awareness and workload in a dynamic control task.
    Endsley MR; Kaber DB
    Ergonomics; 1999 Mar; 42(3):462-92. PubMed ID: 10048306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation.
    Bailey NR; Scerbo MW; Freeman FG; Mikulka PJ; Scott LA
    Hum Factors; 2006; 48(4):693-709. PubMed ID: 17240718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering user' acceptance of automation through prior automation exposure.
    Bekier M; Molesworth BRC
    Ergonomics; 2017 Jun; 60(6):745-753. PubMed ID: 27545144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of automated decision aids on performance, operator behaviour and workload in a simulated supervisory control task.
    Röttger S; Bali K; Manzey D
    Ergonomics; 2009 May; 52(5):512-23. PubMed ID: 19296323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control.
    Miller CA; Parasuraman R
    Hum Factors; 2007 Feb; 49(1):57-75. PubMed ID: 17315844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of adaptive task allocation on monitoring of automated systems.
    Parasuraman R; Mouloua M; Molloy R
    Hum Factors; 1996 Dec; 38(4):665-79. PubMed ID: 11536753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.
    McKendrick R; Shaw T; de Visser E; Saqer H; Kidwell B; Parasuraman R
    Hum Factors; 2014 May; 56(3):463-75. PubMed ID: 24930169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Procedural errors in air traffic control: effects of traffic density, expertise, and automation.
    Di Nocera F; Fabrizi R; Terenzi M; Ferlazzo F
    Aviat Space Environ Med; 2006 Jun; 77(6):639-43. PubMed ID: 16780243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting performance on a target monitoring task employing an automatic tracker.
    McFadden SM; Vimalachandran A; Blackmore E
    Ergonomics; 2004 Feb; 47(3):257-80. PubMed ID: 14668161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for types and levels of human interaction with automation.
    Parasuraman R; Sheridan TB; Wickens CD
    IEEE Trans Syst Man Cybern A Syst Hum; 2000 May; 30(3):286-97. PubMed ID: 11760769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-factors engineering for smart transport: design support for car drivers and train traffic controllers.
    Lenior D; Janssen W; Neerincx M; Schreibers K
    Appl Ergon; 2006 Jul; 37(4):479-90. PubMed ID: 16765905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a psychophysiological system for adaptive automation on performance, workload, and the event-related potential P300 component.
    Prinzel LJ; Freeman FG; Scerbo MW; Mikulka PJ; Pope AT
    Hum Factors; 2003 winter; 45(4):601-13. PubMed ID: 15055457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coadaptive aiding and automation enhance operator performance.
    Christensen JC; Estepp JR
    Hum Factors; 2013 Oct; 55(5):965-75. PubMed ID: 24218905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding.
    Wilson GF; Russell CA
    Hum Factors; 2007 Dec; 49(6):1005-18. PubMed ID: 18074700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of automation on aircrew communication and decision-making performance.
    Bowers C; Deaton J; Oser R; Prince C; Kolb M
    Int J Aviat Psychol; 1995; 5(2):145-67. PubMed ID: 11540254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Task Difficulty and Display Format on Automation Usage Strategy: A Workload Capacity Analysis.
    Yamani Y; McCarley JS
    Hum Factors; 2018 Jun; 60(4):527-537. PubMed ID: 29470135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.