These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16553374)

  • 21. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies.
    Sponer J; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 1996 Aug; 14(1):117-35. PubMed ID: 8877568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.
    Bandyopadhyay D; Bhattacharyya D
    Biopolymers; 2006 Oct; 83(3):313-25. PubMed ID: 16729290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Simulation of interactions in the co-planar nucleic acid base pairs using atom-atom potential functions].
    Poltev VI; Shuliupina NV
    Mol Biol (Mosk); 1984; 18(6):1549-61. PubMed ID: 6521736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct evaluation of individual hydrogen bond energy in situ in intra- and intermolecular multiple hydrogen bonds system.
    Liu C; Zhao DX; Yang ZZ
    J Comput Chem; 2012 Feb; 33(4):379-90. PubMed ID: 22170234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hydrogen bonding properties of cytosine: a computational study of cytosine complexed with hydrogen fluoride, water, and ammonia.
    Hunter KC; Rutledge LR; Wetmore SD
    J Phys Chem A; 2005 Oct; 109(42):9554-62. PubMed ID: 16866407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interpretation of hydrogen bonding in the weak and strong regions using conceptual DFT descriptors.
    Ozen AS; De Proft F; Aviyente V; Geerlings P
    J Phys Chem A; 2006 May; 110(17):5860-8. PubMed ID: 16640382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection and evaluation of hydrogen bond strength in nucleic acid base pairs.
    Mohajeri A; Nobandegani FF
    J Phys Chem A; 2008 Jan; 112(2):281-95. PubMed ID: 18085756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating the hydrogen bond energy.
    Wendler K; Thar J; Zahn S; Kirchner B
    J Phys Chem A; 2010 Sep; 114(35):9529-36. PubMed ID: 20707378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure and chemical bonding in the N(2)-CuX and N(2)...XCu (X = F, Cl, Br) systems studied by means of the molecular orbital and Quantum Chemical Topology methods.
    Kisowska K; Berski S; Latajka Z
    J Comput Chem; 2008 Dec; 29(16):2677-92. PubMed ID: 18484638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic properties of multifurcated bent hydrogen bonds CH3...Y and CH2...Y.
    Li AY; Yan XH
    Phys Chem Chem Phys; 2007 Dec; 9(47):6263-71. PubMed ID: 18046475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of hydrogen bonds in protein-DNA recognition: effect of nonplanar amino groups.
    Mukherjee S; Majumdar S; Bhattacharyya D
    J Phys Chem B; 2005 May; 109(20):10484-92. PubMed ID: 16852270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen bonded arrays: the power of multiple hydrogen bonds.
    Shokri A; Schmidt J; Wang XB; Kass SR
    J Am Chem Soc; 2012 Feb; 134(4):2094-9. PubMed ID: 22239658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of microsolvation on the adenine-uracil base pair and its radical anion: adenine-uracil mono- and dihydrates.
    Kim S; Schaefer HF
    J Phys Chem A; 2007 Oct; 111(41):10381-9. PubMed ID: 17705454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum-chemical analysis of C-H...O and C-H...N interactions in RNA base pairs--H-bond versus anti-H-bond pattern.
    Brandl M; Meyer M; Sühnel J
    J Biomol Struct Dyn; 2001 Feb; 18(4):545-55. PubMed ID: 11245250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interplay between hydrogen-bond formation and multicenter pi-electron delocalization: intramolecular hydrogen bonds.
    Lenain P; Mandado M; Mosquera RA; Bultinck P
    J Phys Chem A; 2008 Oct; 112(42):10689-96. PubMed ID: 18821741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.
    Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J
    J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The lowest singlet (n,pi*) and (pi,pi*) excited states of the hydrogen-bonded complex between water and pyrazine.
    Cai ZL; Reimers JR
    J Phys Chem A; 2007 Feb; 111(5):954-62. PubMed ID: 17266237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases.
    Schutz CN; Warshel A
    Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Red-shifted hydrogen bonds and blue-shifted van der Waals contact in the standard Watson-Crick adenine-thymine base pair.
    Zhou PP; Qiu WY
    J Phys Chem A; 2009 Sep; 113(38):10306-20. PubMed ID: 19715282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unpaired and sigma bond electrons as H, Cl, and Li Bond Acceptors: an anomalous one-electron blue-shifting chlorine bond.
    Raghavendra B; Arunan E
    J Phys Chem A; 2007 Oct; 111(39):9699-706. PubMed ID: 17760431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.