These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16553800)

  • 1. Transmitter release face Ca2+ channel clusters persist at isolated presynaptic terminals.
    Sun L; Li Q; Khanna R; Chan AW; Wong F; Stanley EF
    Eur J Neurosci; 2006 Mar; 23(5):1391-6. PubMed ID: 16553800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes.
    Khanna R; Li Q; Sun L; Collins TJ; Stanley EF
    Neuroscience; 2006 Jul; 140(4):1201-8. PubMed ID: 16757118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The presynaptic CaV2.2 channel-transmitter release site core complex.
    Khanna R; Li Q; Bewersdorf J; Stanley EF
    Eur J Neurosci; 2007 Aug; 26(3):547-59. PubMed ID: 17686036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Munc18: a presynaptic transmitter release site N type (CaV2.2) calcium channel interacting protein.
    Chan AW; Khanna R; Li Q; Stanley EF
    Channels (Austin); 2007; 1(1):11-20. PubMed ID: 19170253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transmitter release-site CaV2.2 channel cluster is linked to an endocytosis coat protein complex.
    Khanna R; Li Q; Schlichter LC; Stanley EF
    Eur J Neurosci; 2007 Aug; 26(3):560-74. PubMed ID: 17686037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance of presynaptic CaV2.2 channels to voltage-dependent inactivation: dynamic palmitoylation and voltage sensitivity.
    Chan AW; Owens S; Tung C; Stanley EF
    Cell Calcium; 2007; 42(4-5):419-25. PubMed ID: 17602741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long splice variant N type calcium channels are clustered at presynaptic transmitter release sites without modular adaptor proteins.
    Khanna R; Sun L; Li Q; Guo L; Stanley EF
    Neuroscience; 2006; 138(4):1115-25. PubMed ID: 16473471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redundancy of Cav2.1 channel accessory subunits in transmitter release at the mouse neuromuscular junction.
    Kaja S; Todorov B; van de Ven RC; Ferrari MD; Frants RR; van den Maagdenberg AM; Plomp JJ
    Brain Res; 2007 Apr; 1143():92-101. PubMed ID: 17320843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified model of presynaptic release site gating by calcium channel domains.
    Gentile L; Stanley EF
    Eur J Neurosci; 2005 Jan; 21(1):278-82. PubMed ID: 15654866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals.
    Ladera C; Martín R; Bartolomé-Martín D; Torres M; Sánchez-Prieto J
    Eur J Neurosci; 2009 Mar; 29(6):1131-40. PubMed ID: 19302149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation.
    Macleod GT; Chen L; Karunanithi S; Peloquin JB; Atwood HL; McRory JE; Zamponi GW; Charlton MP
    Eur J Neurosci; 2006 Jun; 23(12):3230-44. PubMed ID: 16820014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium influx and transmitter release in a fast CNS synapse.
    Borst JG; Sakmann B
    Nature; 1996 Oct; 383(6599):431-4. PubMed ID: 8837774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats.
    Hige T; Fujiyoshi Y; Takahashi T
    Eur J Neurosci; 2006 Oct; 24(7):1955-66. PubMed ID: 17040476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals.
    Nishimune H; Sanes JR; Carlson SS
    Nature; 2004 Dec; 432(7017):580-7. PubMed ID: 15577901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium influx through N-methyl-D-aspartate receptors triggers GABA release at interneuron-Purkinje cell synapse in rat cerebellum.
    Glitsch MD
    Neuroscience; 2008 Jan; 151(2):403-9. PubMed ID: 18055124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine release at neuromuscular junctions of adult tottering mice is controlled by N-(cav2.2) and R-type (cav2.3) but not L-type (cav1.2) Ca2+ channels.
    Pardo NE; Hajela RK; Atchison WD
    J Pharmacol Exp Ther; 2006 Dec; 319(3):1009-20. PubMed ID: 16982704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-type calcium channels mediate a GABA(B) presynaptic modulation in the corticostriatal synapse in turtle's paleostriatum augmentatum.
    Sánchez-Mejorada E; Sánchez-Mondragon G; Pineda JC; González M; Barral J
    Synapse; 2009 Oct; 63(10):855-62. PubMed ID: 19562696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization.
    Li Q; Lau A; Morris TJ; Guo L; Fordyce CB; Stanley EF
    J Neurosci; 2004 Apr; 24(16):4070-81. PubMed ID: 15102922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic Ca2+ channels: a functional patchwork.
    Reid CA; Bekkers JM; Clements JD
    Trends Neurosci; 2003 Dec; 26(12):683-7. PubMed ID: 14624853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels.
    Kiyonaka S; Wakamori M; Miki T; Uriu Y; Nonaka M; Bito H; Beedle AM; Mori E; Hara Y; De Waard M; Kanagawa M; Itakura M; Takahashi M; Campbell KP; Mori Y
    Nat Neurosci; 2007 Jun; 10(6):691-701. PubMed ID: 17496890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.