BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 1655383)

  • 21. The control of steroidogenesis by human fetal adrenal cells in tissue culture. I. Responses to adrenocorticotropin.
    Fujieda K; Faiman C; Reyes FI; Winter JS
    J Clin Endocrinol Metab; 1981 Jul; 53(1):34-8. PubMed ID: 6263939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of ovine fetal adrenal function by pulsatile or continuous administration of adrenocorticotropin-(1-24). II. Effects on adrenal cell responses in vitro.
    Manchester EL; Lye SJ; Challis JR
    Endocrinology; 1983 Aug; 113(2):777-82. PubMed ID: 6307654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adrenocorticotropin interferes with transforming growth factor-beta-induced growth inhibition of neocortical cells from the human fetal adrenal gland.
    Parker CR; Stankovic AK; Harlin C; Carden L
    J Clin Endocrinol Metab; 1992 Dec; 75(6):1519-21. PubMed ID: 1334497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of transforming growth factor beta on ovine adrenocortical cells.
    Rainey WE; Viard I; Mason JI; Cochet C; Chambaz EM; Saez JM
    Mol Cell Endocrinol; 1988 Dec; 60(2-3):189-98. PubMed ID: 2850957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo adrenocorticotropin (1-24)-induced accumulation of cyclic adenosine monophosphate by ovine fetal adrenal cells is inhibited by concomitant infusion of metopirone.
    Lye SJ; Challis JR
    Endocrinology; 1984 Oct; 115(4):1584-7. PubMed ID: 6207013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the baboon fetal adrenal gland: regulation of the ontogenesis of the definitive and transitional zones by adrenocorticotropin.
    Leavitt MG; Albrecht ED; Pepe GJ
    J Clin Endocrinol Metab; 1999 Oct; 84(10):3831-5. PubMed ID: 10523038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on the role of ACTH in the regulation of adrenal responsiveness and the timing of parturition in the ovine fetus.
    Poore KR; Young IR; Canny BJ; Thorburn GD
    J Endocrinol; 1998 Aug; 158(2):161-71. PubMed ID: 9771459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of transforming growth factor-beta 1 on human adrenocortical fasciculata-reticularis cell differentiated functions.
    Lebrethon MC; Jaillard C; Naville D; Bégeot M; Saez JM
    J Clin Endocrinol Metab; 1994 Oct; 79(4):1033-9. PubMed ID: 7962271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between TGF-beta and adrenocorticotropin in growth regulation of human adrenal fetal zone cells.
    Stankovic AK; Grizzle WE; Stockard CR; Parker CR
    Am J Physiol; 1994 Mar; 266(3 Pt 1):E495-500. PubMed ID: 8166271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prostaglandin E2 is a positive regulator of adrenocorticotropin receptors, 3 beta-hydroxysteroid dehydrogenase, and 17 alpha-hydroxylase expression in bovine adrenocortical cells.
    Rainey WE; Naville D; Cline N; Mason JI
    Endocrinology; 1991 Sep; 129(3):1333-9. PubMed ID: 1651847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of calcium in steroidogenesis in fetal zone cells of the human fetal adrenal gland.
    Carr BR; Rainey WE; Mason JI
    J Clin Endocrinol Metab; 1986 Oct; 63(4):913-7. PubMed ID: 3018031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Angiotensin-II stimulates an increase in cAMP and expression of 17 alpha-hydroxylase cytochrome P450 in fetal bovine adrenocortical cells.
    Bird IM; Mason JI; Oka K; Rainey WE
    Endocrinology; 1993 Feb; 132(2):932-4. PubMed ID: 8381079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Type beta transforming growth factor affects adrenocortical cell-differentiated functions.
    Feige JJ; Cochet C; Rainey WE; Madani C; Chambaz EM
    J Biol Chem; 1987 Oct; 262(28):13491-5. PubMed ID: 2820972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transforming growth factor beta 1 is a negative regulator of steroid 17 alpha-hydroxylase expression in bovine adrenocortical cells.
    Perrin A; Pascal O; Defaye G; Feige JJ; Chambaz EM
    Endocrinology; 1991 Jan; 128(1):357-62. PubMed ID: 1986928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutual effects of melatonin and activin on induction of aldosterone production by human adrenocortical cells.
    Hara T; Otsuka F; Tsukamoto-Yamauchi N; Inagaki K; Hosoya T; Nakamura E; Terasaka T; Komatsubara M; Makino H
    J Steroid Biochem Mol Biol; 2015 Aug; 152():8-15. PubMed ID: 25889901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Opposite effects of angiotensin-II and corticotropin on bovine adrenocortical cell steroidogenic responsiveness.
    Ouali R; Langlois D; Saez JM; Begeot M
    Mol Cell Endocrinol; 1991 Oct; 81(1-3):43-52. PubMed ID: 1665831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ovine fetal adrenal maturation at term and during fetal ACTH administration: evidence that the modulating effect of cortisol may involve cAMP.
    Challis JR; Lye SJ; Welsh J
    Can J Physiol Pharmacol; 1986 Aug; 64(8):1085-90. PubMed ID: 3024788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunolocalisation of P450(C17) in the fetal sheep adrenal gland during gestation and in response to ACTH and glucocorticoid administration.
    Han X; Berdusco ET; Lu F; Challis JR
    Equine Vet J Suppl; 1997 Jun; (24):62-7. PubMed ID: 9355804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transforming growth factor-beta 1 inhibits aldosterone and stimulates adrenal renin in cultured bovine zona glomerulosa cells.
    Gupta P; Franco-Saenz R; Gentry LE; Mulrow PJ
    Endocrinology; 1992 Aug; 131(2):631-6. PubMed ID: 1322277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of CYP17 expression by adrenal androgens and transforming growth factor beta in adrenocortical cells.
    Biernacka-Łukanty JM; Lehmann TP; Trzeciak WH
    Acta Biochim Pol; 2004; 51(4):907-17. PubMed ID: 15625562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.