These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 16553839)
41. Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. Vilas-Bôas GT; Lemos MV Can J Microbiol; 2004 Aug; 50(8):605-13. PubMed ID: 15467786 [TBL] [Abstract][Full Text] [Related]
42. [Valuation for usefulness of selected chromosomal markers for Bacillus anthracis identification. I. Valuation for markers SG-749, SG-450 and SG-300]. Zasada AA; Jagielski M Med Dosw Mikrobiol; 2006; 58(4):347-54. PubMed ID: 17642312 [TBL] [Abstract][Full Text] [Related]
43. Genetic diversity among Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis strains using repetitive element polymorphism-PCR. Brumlik MJ; Bielawska-Drózd A; Zakowska D; Liang X; Spalletta RA; Patra G; Delvecchio VG Pol J Microbiol; 2004; 53(4):215-25. PubMed ID: 15790070 [TBL] [Abstract][Full Text] [Related]
44. The possibility of discriminating within the Bacillus cereus group using gyrB sequencing and PCR-RFLP. Jensen GB; Fisker N; Sparsø T; Andrup L Int J Food Microbiol; 2005 Sep; 104(1):113-20. PubMed ID: 16005534 [TBL] [Abstract][Full Text] [Related]
45. Identification of vip3A-type genes from Bacillus thuringiensis strains and characterization of a novel vip3A-type gene. Liu J; Song F; Zhang J; Liu R; He K; Tan J; Huang D Lett Appl Microbiol; 2007 Oct; 45(4):432-8. PubMed ID: 17868317 [TBL] [Abstract][Full Text] [Related]
46. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis-based pesticides. Jensen GB; Larsen P; Jacobsen BL; Madsen B; Smidt L; Andrup L Appl Environ Microbiol; 2002 Oct; 68(10):4900-5. PubMed ID: 12324337 [TBL] [Abstract][Full Text] [Related]
47. Discrimination of Bacillus cereus and Bacillus thuringiensis with 16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites. Chen ML; Tsen HY J Appl Microbiol; 2002; 92(5):912-9. PubMed ID: 11972696 [TBL] [Abstract][Full Text] [Related]
48. Detection of genetic polymorphism by RAPD-PCR among isolates of Bacillus thuringiensis. Malkawi HI; al-Momani F; Meqdam MM; Saadoun I; Mohammad MJ New Microbiol; 1999 Jul; 22(3):241-7. PubMed ID: 10423743 [TBL] [Abstract][Full Text] [Related]
49. Chromosome-Directed PCR-Based Detection and Quantification of Bacillus cereus Group Members with Focus on B. thuringiensis Serovar israelensis Active against Nematoceran Larvae. Schneider S; Hendriksen NB; Melin P; Lundström JO; Sundh I Appl Environ Microbiol; 2015 Aug; 81(15):4894-903. PubMed ID: 25979887 [TBL] [Abstract][Full Text] [Related]
50. Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Abderrahmani A; Tapi A; Nateche F; Chollet M; Leclère V; Wathelet B; Hacene H; Jacques P Appl Microbiol Biotechnol; 2011 Nov; 92(3):571-81. PubMed ID: 21751008 [TBL] [Abstract][Full Text] [Related]
51. Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting. Peruca AP; Vilas-Bôas GT; Arantes OM Mem Inst Oswaldo Cruz; 2008 Aug; 103(5):497-500. PubMed ID: 18797766 [TBL] [Abstract][Full Text] [Related]
52. Fluorescent Amplified Fragment Length Polymorphism Analysis of Norwegian Bacillus cereus and Bacillus thuringiensis Soil Isolates. Ticknor LO; Kolstø AB; Hill KK; Keim P; Laker MT; Tonks M; Jackson PJ Appl Environ Microbiol; 2001 Oct; 67(10):4863-73. PubMed ID: 11571195 [TBL] [Abstract][Full Text] [Related]
53. Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Sorokin A; Candelon B; Guilloux K; Galleron N; Wackerow-Kouzova N; Ehrlich SD; Bourguet D; Sanchis V Appl Environ Microbiol; 2006 Feb; 72(2):1569-78. PubMed ID: 16461712 [TBL] [Abstract][Full Text] [Related]
54. Screening of Bacillus thuringiensis serotypes by polymerase chain reaction (PCR) for insecticidal crystal genes toxic against coffee berry borer. Naidu MM; Rang C; Frutos R; Sreenivasan CS; Naidu R Indian J Exp Biol; 2001 Feb; 39(2):148-54. PubMed ID: 11480211 [TBL] [Abstract][Full Text] [Related]
55. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Frederiksen K; Rosenquist H; Jørgensen K; Wilcks A Appl Environ Microbiol; 2006 May; 72(5):3435-40. PubMed ID: 16672488 [TBL] [Abstract][Full Text] [Related]
57. A RAPD-PCR method for the rapid detection of Bacillus cereus. Lee J; Kwon GH; Park JY; Park CS; Kwon DY; Lim J; Kim JS; Kim JH J Microbiol Biotechnol; 2011 Mar; 21(3):274-6. PubMed ID: 21464598 [TBL] [Abstract][Full Text] [Related]
58. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Bourque SN; Valéro JR; Mercier J; Lavoie MC; Levesque RC Appl Environ Microbiol; 1993 Feb; 59(2):523-7. PubMed ID: 8434916 [TBL] [Abstract][Full Text] [Related]
59. Distribution of genes encoding putative virulence factors and fragment length polymorphisms in the vrrA gene among Brazilian isolates of Bacillus cereus and Bacillus thuringiensis. Zahner V; Cabral DA; Régua-Mangia AH; Rabinovitch L; Moreau G; McIntosh D Appl Environ Microbiol; 2005 Dec; 71(12):8107-14. PubMed ID: 16332792 [TBL] [Abstract][Full Text] [Related]
60. Development of a high-resolution melting-based approach for efficient differentiation among Bacillus cereus group isolates. Antolinos V; Fernández PS; Ros-Chumillas M; Periago PM; Weiss J Foodborne Pathog Dis; 2012 Sep; 9(9):777-85. PubMed ID: 22881064 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]