BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16553878)

  • 1. Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon.
    Hayashi K; Kensuke T; Kobayashi K; Ogasawara N; Ogura M
    Mol Microbiol; 2006 Mar; 59(6):1714-29. PubMed ID: 16553878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus subtilis rapD, a direct target of transcription repression by RghR, negatively regulates srfA expression.
    Ogura M; Fujita Y
    FEMS Microbiol Lett; 2007 Mar; 268(1):73-80. PubMed ID: 17227471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis.
    Ogura M; Shimane K; Asai K; Ogasawara N; Tanaka T
    Mol Microbiol; 2003 Sep; 49(6):1685-97. PubMed ID: 12950930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of DegU-dependent expression of bpr in Bacillus subtilis.
    Tsukahara K; Ogura M
    FEMS Microbiol Lett; 2008 Mar; 280(1):8-13. PubMed ID: 18194340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis.
    Hayashi K; Ohsawa T; Kobayashi K; Ogasawara N; Ogura M
    J Bacteriol; 2005 Oct; 187(19):6659-67. PubMed ID: 16166527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids.
    Hirooka K; Kunikane S; Matsuoka H; Yoshida K; Kumamoto K; Tojo S; Fujita Y
    J Bacteriol; 2007 Jul; 189(14):5170-82. PubMed ID: 17483215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis.
    Smits WK; Bongiorni C; Veening JW; Hamoen LW; Kuipers OP; Perego M
    Mol Microbiol; 2007 Jul; 65(1):103-20. PubMed ID: 17581123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus subtilis LmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH.
    Yoshida K; Ohki YH; Murata M; Kinehara M; Matsuoka H; Satomura T; Ohki R; Kumano M; Yamane K; Fujita Y
    J Bacteriol; 2004 Sep; 186(17):5640-8. PubMed ID: 15317768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus subtilis ilvB operon: an intersection of global regulons.
    Shivers RP; Sonenshein AL
    Mol Microbiol; 2005 Jun; 56(6):1549-59. PubMed ID: 15916605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon.
    Yoshida KI; Shibayama T; Aoyama D; Fujita Y
    J Mol Biol; 1999 Jan; 285(3):917-29. PubMed ID: 9887260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT; Buist G; Kok J; Kuipers OP
    J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the helix-turn-helix region of Bacillus subtilis response regulator DegU, and identification of cis-acting sequences for DegU in the aprE and comK promoters.
    Shimane K; Ogura M
    J Biochem; 2004 Sep; 136(3):387-97. PubMed ID: 15598897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis.
    Ohsawa T; Tsukahara K; Sato T; Ogura M
    J Biochem; 2006 Feb; 139(2):203-11. PubMed ID: 16452308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli.
    Lee YK; Yoon BD; Yoon JH; Lee SG; Song JJ; Kim JG; Oh HM; Kim HS
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):567-72. PubMed ID: 17268783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CodY is required for nutritional repression of Bacillus subtilis genetic competence.
    Serror P; Sonenshein AL
    J Bacteriol; 1996 Oct; 178(20):5910-5. PubMed ID: 8830686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases.
    Duitman EH; Wyczawski D; Boven LG; Venema G; Kuipers OP; Hamoen LW
    Appl Environ Microbiol; 2007 Jun; 73(11):3490-6. PubMed ID: 17416694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis.
    Eckart RA; Brantl S; Licht A
    FEMS Microbiol Lett; 2009 Oct; 299(2):223-31. PubMed ID: 19732150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus.
    Kuscer E; Coates N; Challis I; Gregory M; Wilkinson B; Sheridan R; Petković H
    J Bacteriol; 2007 Jul; 189(13):4756-63. PubMed ID: 17468238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.