These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 16553893)
1. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Truman W; de Zabala MT; Grant M Plant J; 2006 Apr; 46(1):14-33. PubMed ID: 16553893 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Thilmony R; Underwood W; He SY Plant J; 2006 Apr; 46(1):34-53. PubMed ID: 16553894 [TBL] [Abstract][Full Text] [Related]
4. Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. de Torres M; Mansfield JW; Grabov N; Brown IR; Ammouneh H; Tsiamis G; Forsyth A; Robatzek S; Grant M; Boch J Plant J; 2006 Aug; 47(3):368-82. PubMed ID: 16792692 [TBL] [Abstract][Full Text] [Related]
5. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. He P; Chintamanani S; Chen Z; Zhu L; Kunkel BN; Alfano JR; Tang X; Zhou JM Plant J; 2004 Feb; 37(4):589-602. PubMed ID: 14756769 [TBL] [Abstract][Full Text] [Related]
6. The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. Block A; Toruño TY; Elowsky CG; Zhang C; Steinbrenner J; Beynon J; Alfano JR New Phytol; 2014 Mar; 201(4):1358-1370. PubMed ID: 24329768 [TBL] [Abstract][Full Text] [Related]
7. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. Lewis JD; Wu R; Guttman DS; Desveaux D PLoS Genet; 2010 Apr; 6(4):e1000894. PubMed ID: 20368970 [TBL] [Abstract][Full Text] [Related]
8. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Underwood W; Zhang S; He SY Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704 [TBL] [Abstract][Full Text] [Related]
9. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000. Lovelace AH; Smith A; Kvitko BH Mol Plant Microbe Interact; 2018 Jul; 31(7):750-765. PubMed ID: 29460676 [TBL] [Abstract][Full Text] [Related]
10. Nuclear dynamics of Arabidopsis calcium-dependent protein kinases in effector-triggered immunity. Gao X; He P Plant Signal Behav; 2013 Apr; 8(4):e23868. PubMed ID: 23425856 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Livaja M; Zeidler D; von Rad U; Durner J Immunobiology; 2008; 213(3-4):161-71. PubMed ID: 18406364 [TBL] [Abstract][Full Text] [Related]
12. Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions. Adams-Phillips L; Wan J; Tan X; Dunning FM; Meyers BC; Michelmore RW; Bent AF Mol Plant Microbe Interact; 2008 May; 21(5):646-57. PubMed ID: 18393624 [TBL] [Abstract][Full Text] [Related]
14. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. Cao FY; Khan M; Taniguchi M; Mirmiran A; Moeder W; Lumba S; Yoshioka K; Desveaux D Plant J; 2019 Oct; 100(1):187-198. PubMed ID: 31148337 [TBL] [Abstract][Full Text] [Related]
15. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Navarro L; Zipfel C; Rowland O; Keller I; Robatzek S; Boller T; Jones JD Plant Physiol; 2004 Jun; 135(2):1113-28. PubMed ID: 15181213 [TBL] [Abstract][Full Text] [Related]
16. Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. Van der Ent S; Van Hulten M; Pozo MJ; Czechowski T; Udvardi MK; Pieterse CMJ; Ton J New Phytol; 2009; 183(2):419-431. PubMed ID: 19413686 [TBL] [Abstract][Full Text] [Related]
17. Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola. Ham JH; Kim MG; Lee SY; Mackey D Plant J; 2007 Aug; 51(4):604-16. PubMed ID: 17573803 [TBL] [Abstract][Full Text] [Related]
18. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Anderson JC; Wan Y; Kim YM; Pasa-Tolic L; Metz TO; Peck SC Proc Natl Acad Sci U S A; 2014 May; 111(18):6846-51. PubMed ID: 24753604 [TBL] [Abstract][Full Text] [Related]
19. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. Chen Z; Kloek AP; Cuzick A; Moeder W; Tang D; Innes RW; Klessig DF; McDowell JM; Kunkel BN Plant J; 2004 Feb; 37(4):494-504. PubMed ID: 14756766 [TBL] [Abstract][Full Text] [Related]
20. The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2. Kim MG; Geng X; Lee SY; Mackey D Plant J; 2009 Feb; 57(4):645-53. PubMed ID: 18980653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]