These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 16555815)
1. Stereoselective C-glycosylation reactions of pyranoses: the conformational preference and reactions of the mannosyl cation. Lucero CG; Woerpel KA J Org Chem; 2006 Mar; 71(7):2641-7. PubMed ID: 16555815 [TBL] [Abstract][Full Text] [Related]
2. Stereochemistry of nucleophilic substitution reactions depending upon substituent: evidence for electrostatic stabilization of pseudoaxial conformers of oxocarbenium ions by heteroatom substituents. Ayala L; Lucero CG; Romero JA; Tabacco SA; Woerpel KA J Am Chem Soc; 2003 Dec; 125(50):15521-8. PubMed ID: 14664599 [TBL] [Abstract][Full Text] [Related]
3. Structural evidence that alkoxy substituents adopt electronically preferred pseudoaxial orientations in six-membered ring dioxocarbenium ions. Chamberland S; Ziller JW; Woerpel KA J Am Chem Soc; 2005 Apr; 127(15):5322-3. PubMed ID: 15826161 [TBL] [Abstract][Full Text] [Related]
4. Stereoselective C-glycosylation reactions of ribose derivatives: electronic effects of five-membered ring oxocarbenium ions. Larsen CH; Ridgway BH; Shaw JT; Smith DM; Woerpel KA J Am Chem Soc; 2005 Aug; 127(31):10879-84. PubMed ID: 16076193 [TBL] [Abstract][Full Text] [Related]
5. Stereodirecting effect of the pyranosyl C-5 substituent in glycosylation reactions. Dinkelaar J; de Jong AR; van Meer R; Somers M; Lodder G; Overkleeft HS; Codée JD; van der Marel GA J Org Chem; 2009 Jul; 74(14):4982-91. PubMed ID: 19489535 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of a chemical glycosylation reaction. Crich D Acc Chem Res; 2010 Aug; 43(8):1144-53. PubMed ID: 20496888 [TBL] [Abstract][Full Text] [Related]
7. Substituent effects on regioselective intramolecular oxidation of unactivated C-H bonds: stereoselective synthesis of substituted tetrahydropyrans. Wong MK; Chung NW; He L; Yang D J Am Chem Soc; 2003 Jan; 125(1):158-62. PubMed ID: 12515517 [TBL] [Abstract][Full Text] [Related]
8. Nucleophilic substitution reactions of sulfur-substituted cyclohexanone acetals: an analysis of the factors controlling stereoselectivity. Billings SB; Woerpel KA J Org Chem; 2006 Jul; 71(14):5171-8. PubMed ID: 16808503 [TBL] [Abstract][Full Text] [Related]
9. Highly stereoselective β-mannopyranosylation via the 1-α-glycosyloxy-isochromenylium-4-gold(I) intermediates. Zhu Y; Yu B Chemistry; 2015 Jun; 21(24):8771-80. PubMed ID: 25899008 [TBL] [Abstract][Full Text] [Related]
10. The impact of oxacarbenium ion conformers on the stereochemical outcome of glycosylations. Walvoort MT; Dinkelaar J; van den Bos LJ; Lodder G; Overkleeft HS; Codée JD; van der Marel GA Carbohydr Res; 2010 Jul; 345(10):1252-63. PubMed ID: 20347068 [TBL] [Abstract][Full Text] [Related]
11. Electrostatic effects on the reactions of cyclohexanone oxocarbenium ions. Baghdasarian G; Woerpel KA J Org Chem; 2006 Sep; 71(18):6851-8. PubMed ID: 16930037 [TBL] [Abstract][Full Text] [Related]
12. DFT studies of the role of C-2-O-2 bond rotation in neighboring-group glycosylation reactions. Whitfield DM; Nukada T Carbohydr Res; 2007 Jul; 342(10):1291-304. PubMed ID: 17477909 [TBL] [Abstract][Full Text] [Related]
13. Determination of the Influence of Side-Chain Conformation on Glycosylation Selectivity using Conformationally Restricted Donors. Dharuman S; Crich D Chemistry; 2016 Mar; 22(13):4535-42. PubMed ID: 26880055 [TBL] [Abstract][Full Text] [Related]
14. Unique reactivity of the Mukaiyama glycosidation catalyst (SnCl3ClO4) toward beta-mannopyranosides. Wang Y; Cheon HS; Kishi Y Chem Asian J; 2008 Feb; 3(2):319-26. PubMed ID: 18183569 [TBL] [Abstract][Full Text] [Related]
15. The 4,6-O-[alpha-(2-(2- iodophenyl)ethylthiocarbonyl)benzylidene] protecting group: stereoselective glycosylation, reductive radical fragmentation, and synthesis of beta-D-rhamnopyranosides and other deoxy sugars. Crich D; Yao Q Org Lett; 2003 Jun; 5(12):2189-91. PubMed ID: 12790561 [TBL] [Abstract][Full Text] [Related]
16. Nucleophilic additions of trimethylsilyl cyanide to cyclic oxocarbenium ions: evidence for the loss of stereoselectivity at the limits of diffusion control. Shenoy SR; Smith DM; Woerpel KA J Am Chem Soc; 2006 Jul; 128(26):8671-7. PubMed ID: 16802834 [TBL] [Abstract][Full Text] [Related]
17. C-glycosylation reactions of sulfur-substituted glycosyl donors: evidence against the role of neighboring-group participation. Beaver MG; Billings SB; Woerpel KA J Am Chem Soc; 2008 Feb; 130(6):2082-6. PubMed ID: 18215038 [TBL] [Abstract][Full Text] [Related]
18. Investigations into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics. Ionescu AR; Whitfield DM; Zgierski MZ; Nukada T Carbohydr Res; 2006 Dec; 341(18):2912-20. PubMed ID: 17069777 [TBL] [Abstract][Full Text] [Related]
19. Glycosylations of cyclopropyl-modified carbohydrates: remarkable β-selectivity using a mannose building block. Brand C; Kettelhoit K; Werz DB Org Lett; 2012 Oct; 14(19):5126-9. PubMed ID: 22985402 [TBL] [Abstract][Full Text] [Related]
20. A study on the conformation-anomeric effect-stereoselectivity relationship in anomeric radical reactions, using conformationally restricted glucose derivatives as substrates. Abe H; Terauchi M; Matsuda A; Shuto S J Org Chem; 2003 Sep; 68(19):7439-47. PubMed ID: 12968898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]