These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16555879)

  • 1. Electrostatic field-adapted molecular fractionation with conjugated caps for energy calculations of charged biomolecules.
    Jiang N; Ma J; Jiang Y
    J Chem Phys; 2006 Mar; 124(11):114112. PubMed ID: 16555879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules.
    Li S; Li W; Fang T
    J Am Chem Soc; 2005 May; 127(19):7215-26. PubMed ID: 15884963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new quantum method for electrostatic solvation energy of protein.
    Mei Y; Ji C; Zhang JZ
    J Chem Phys; 2006 Sep; 125(9):094906. PubMed ID: 16965118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular fractionation with conjugated caps density matrix with pairwise interaction correction for protein energy calculation.
    Chen XH; Zhang JZ
    J Chem Phys; 2006 Jul; 125(4):44903. PubMed ID: 16942188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic energies and forces computed without explicit interparticle interactions: a linear time complexity formulation.
    Petrella RJ; Karplus M
    J Comput Chem; 2005 Jun; 26(8):755-87. PubMed ID: 15800892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.
    Li W; Li S; Jiang Y
    J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis.
    Gilson MK; Honig B
    Proteins; 1988; 4(1):7-18. PubMed ID: 3186692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.
    Kato M; Pisliakov AV; Warshel A
    Proteins; 2006 Sep; 64(4):829-44. PubMed ID: 16779836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient approach for ab initio energy calculation of biopolymers.
    Chen X; Zhang Y; Zhang JZ
    J Chem Phys; 2005 May; 122(18):184105. PubMed ID: 15918692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational simulations of aqueous solvated alpha-conotoxin GI and its single disulfide analogues using a polarizable force field model.
    Jiang N; Ma J
    J Phys Chem A; 2008 Oct; 112(40):9854-67. PubMed ID: 18788721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-layer coarse-graining polarization model for treating electrostatic interactions of solvated α-conotoxin peptides.
    Jiang N; Ma J
    J Chem Phys; 2012 Apr; 136(13):134105. PubMed ID: 22482538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic interactions across a beta-sheet.
    Blasie CA; Berg JM
    Biochemistry; 1997 May; 36(20):6218-22. PubMed ID: 9166794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved fragment-based quantum mechanical method for calculation of electrostatic solvation energy of proteins.
    Jia X; Wang X; Liu J; Zhang JZ; Mei Y; He X
    J Chem Phys; 2013 Dec; 139(21):214104. PubMed ID: 24320361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure calculations in arbitrary electrostatic environments.
    Watson MA; Rappoport D; Lee EM; Olivares-Amaya R; Aspuru-Guzik A
    J Chem Phys; 2012 Jan; 136(2):024101. PubMed ID: 22260558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules.
    Fox SJ; Pittock C; Fox T; Tautermann CS; Malcolm N; Skylaris CK
    J Chem Phys; 2011 Dec; 135(22):224107. PubMed ID: 22168680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations.
    Söderhjelm P; Ryde U
    J Phys Chem A; 2009 Jan; 113(3):617-27. PubMed ID: 19093829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric field-derived point charges to mimic the electrostatics in molecular crystals.
    Whitten AE; McKinnon JJ; Spackman MA
    J Comput Chem; 2006 Jul; 27(10):1063-70. PubMed ID: 16685714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.