These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16555919)

  • 1. Relativistic calculation of nuclear magnetic shieldings of xenon difluoride.
    Kudo K; Ootani Y; Funaki M; Fukui H
    J Chem Phys; 2006 Mar; 124(11):116101. PubMed ID: 16555919
    [No Abstract]   [Full Text] [Related]  

  • 2. Comment on "Calculation of nuclear magnetic shieldings using an analytically differentiated relativistic shielding formula" [J. Chem. Phys. 123, 114102 (2005)].
    Manninen P; Vaara J
    J Chem Phys; 2006 Apr; 124(13):137101. PubMed ID: 16613482
    [No Abstract]   [Full Text] [Related]  

  • 3. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. II. Consideration of perturbations in the metric operator.
    Maeda H; Ootani Y; Fukui H
    J Chem Phys; 2007 May; 126(17):174102. PubMed ID: 17492852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component.
    Kudo K; Maeda H; Kawakubo T; Ootani Y; Funaki M; Fukui H
    J Chem Phys; 2006 Jun; 124(22):224106. PubMed ID: 16784262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory.
    Ilias M; Saue T; Enevoldsen T; Jensen HJ
    J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic calculation of nuclear magnetic shielding tensor including two-electron spin-orbit interactions.
    Ootani Y; Yamaguti H; Maeda H; Fukui H
    J Chem Phys; 2006 Oct; 125(16):164106. PubMed ID: 17092062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.
    Hamaya S; Maeda H; Funaki M; Fukui H
    J Chem Phys; 2008 Dec; 129(22):224103. PubMed ID: 19071903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of nuclear magnetic resonance shieldings using frozen-density embedding.
    Jacob CR; Visscher L
    J Chem Phys; 2006 Nov; 125(19):194104. PubMed ID: 17129086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupling of the Dirac equation correct to the third order for the magnetic perturbation.
    Ootani Y; Maeda H; Fukui H
    J Chem Phys; 2007 Aug; 127(8):084117. PubMed ID: 17764239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete basis set prediction of methanol isotropic nuclear magnetic shieldings and indirect nuclear spin-spin coupling constants (SSCC) using polarization-consistent and XZP basis sets and B3LYP and BHandH density functionals.
    Kupka T
    Magn Reson Chem; 2009 Aug; 47(8):674-83. PubMed ID: 19431153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-component relativistic theory for NMR parameters: unified formulation and numerical assessment of different approaches.
    Cheng L; Xiao Y; Liu W
    J Chem Phys; 2009 Apr; 130(14):144102. PubMed ID: 19368424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory and computation of nuclear magnetic resonance parameters.
    Vaara J
    Phys Chem Chem Phys; 2007 Oct; 9(40):5399-418. PubMed ID: 17925967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalar relativistic calculations of hyperfine coupling tensors using the Douglas-Kroll-Hess method with a finite-size nucleus model.
    Malkin E; Malkin I; Malkina OL; Malkin VG; Kaupp M
    Phys Chem Chem Phys; 2006 Sep; 8(35):4079-85. PubMed ID: 17028696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rearrangement of phenylethenes on reaction with iodine-xenon difluoride.
    Patrick TB; Qian S
    Org Lett; 2000 Oct; 2(21):3359-60. PubMed ID: 11029210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The appearance of an interval of energies that contain the whole diamagnetic contribution to NMR magnetic shieldings.
    Maldonado A; Aucar GA
    J Chem Phys; 2007 Oct; 127(15):154115. PubMed ID: 17949140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of water's isotropic nuclear shieldings and indirect nuclear spin-spin coupling constants (SSCCs) using correlation-consistent and polarization-consistent basis sets in the Kohn-Sham basis set limit.
    Kupka T
    Magn Reson Chem; 2009 Mar; 47(3):210-21. PubMed ID: 19086009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.