BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16556220)

  • 21. The Chlamydia trachomatis inclusion membrane protein CT006 associates with lipid droplets in eukaryotic cells.
    Bugalhão JN; Luís MP; Pereira IS; da Cunha M; Pais SV; Mota LJ
    PLoS One; 2022; 17(2):e0264292. PubMed ID: 35192658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific antigens of Chlamydia pecorum and their homologues in C psittaci and C trachomatis.
    Baghian A; Kousoulas K; Truax R; Storz J
    Am J Vet Res; 1996 Dec; 57(12):1720-5. PubMed ID: 8950425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A chemical mutagenesis approach to identify virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis.
    Nguyen B; Valdivia R
    Methods Mol Biol; 2014; 1197():347-58. PubMed ID: 25172291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in
    Pokorzynski ND; Thompson CC; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():394. PubMed ID: 28951853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directional evolution of Chlamydia trachomatis towards niche-specific adaptation.
    Borges V; Nunes A; Ferreira R; Borrego MJ; Gomes JP
    J Bacteriol; 2012 Nov; 194(22):6143-53. PubMed ID: 22961851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis.
    Akers JC; Tan M
    J Bacteriol; 2006 Jun; 188(12):4236-43. PubMed ID: 16740930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous transcriptional profiling of bacteria and their host cells.
    Humphrys MS; Creasy T; Sun Y; Shetty AC; Chibucos MC; Drabek EF; Fraser CM; Farooq U; Sengamalay N; Ott S; Shou H; Bavoil PM; Mahurkar A; Myers GS
    PLoS One; 2013; 8(12):e80597. PubMed ID: 24324615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion in Chlamydia trachomatis and Can Reverse Cassette-Induced Polar Effects.
    Keb G; Hayman R; Fields KA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30224436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New system for positive selection of recombinant plasmids and dual expression in yeast and bacteria based on the restriction ribonuclease RegB.
    Saïda F; Uzan M; Lallemand JY; Bontems F
    Biotechnol Prog; 2003; 19(3):727-33. PubMed ID: 12790631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Cloning and expression of Chlamydia trachomatis OmcBc gene and antigenicity analysis of the protein].
    Wang J; Zhang YQ; Zhong GM; Yu P
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Jul; 30(7):1558-61. PubMed ID: 20650765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning of Chlamydia trachomatis 26K protein expressed in Escherichia coli.
    Del Pezzo M; Rosiello M; Miloso M; Picciotti E; Gulletta E
    New Microbiol; 1994 Oct; 17(4):291-6. PubMed ID: 7861984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic transplantation: Salmonella enterica serovar Typhimurium as a host to study sigma factor and anti-sigma factor interactions in genetically intractable systems.
    Karlinsey JE; Hughes KT
    J Bacteriol; 2006 Jan; 188(1):103-14. PubMed ID: 16352826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth.
    Huang J; Lesser CF; Lory S
    Nature; 2008 Nov; 456(7218):112-5. PubMed ID: 18830244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of the Chlamydia trachomatis histone H1-like protein Hc2 is IspE dependent and IhtA independent.
    Grieshaber NA; Sager JB; Dooley CA; Hayes SF; Hackstadt T
    J Bacteriol; 2006 Jul; 188(14):5289-92. PubMed ID: 16816202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis.
    Belland RJ; Zhong G; Crane DD; Hogan D; Sturdevant D; Sharma J; Beatty WL; Caldwell HD
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8478-83. PubMed ID: 12815105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis of the proteolytic and chaperone activity of Chlamydia trachomatis CT441.
    Kohlmann F; Shima K; Hilgenfeld R; Solbach W; Rupp J; Hansen G
    J Bacteriol; 2015 Jan; 197(1):211-8. PubMed ID: 25349155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A functional genomic yeast screen to identify pathogenic bacterial proteins.
    Slagowski NL; Kramer RW; Morrison MF; LaBaer J; Lesser CF
    PLoS Pathog; 2008 Jan; 4(1):e9. PubMed ID: 18208325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of C. trachomatis Inc proteins in expression of their genes in HeLa cell culture.
    Shkarupeta MM; Kostrjukova ES; Lazarev VN; Levitskii SA; Basovskii YI; Govorun VM
    Bull Exp Biol Med; 2008 Aug; 146(2):237-42. PubMed ID: 19145327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Search of a Mechanistic Link between Chlamydia trachomatis-Induced Cellular Pathophysiology and Oncogenesis.
    Steiert B; Faris R; Weber MM
    Infect Immun; 2023 Feb; 91(2):e0044322. PubMed ID: 36695575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophobic domains determine localization of IncC and IncG full-length proteins of C. trachomatis during their expression in cultured HeLa cells.
    Basovskiy YI; Shkarupeta MM; Levitskiy SA; Kostryukova ES; Lazarev VN; Govorun VM
    Bull Exp Biol Med; 2008 Apr; 145(4):425-9. PubMed ID: 19110584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.