These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16556567)

  • 1. The effect of interference in the early processing stages on response inhibition in the stop signal task.
    Verbruggen F; Liefooghe B; Vandierendonck A
    Q J Exp Psychol (Hove); 2006 Jan; 59(1):190-203. PubMed ID: 16556567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between stop signal inhibition and distractor interference in the flanker and Stroop task.
    Verbruggen F; Liefooghe B; Vandierendonck A
    Acta Psychol (Amst); 2004 May; 116(1):21-37. PubMed ID: 15111228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of stimulus-stimulus compatibility and stimulus-response compatibility on response inhibition.
    Verbruggen F; Liefooghe B; Notebaert W; Vandierendonck A
    Acta Psychol (Amst); 2005 Nov; 120(3):307-26. PubMed ID: 15993830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory MEG responses predict successful and failed inhibition in a stop-signal task.
    Boehler CN; Münte TF; Krebs RM; Heinze HJ; Schoenfeld MA; Hopf JM
    Cereb Cortex; 2009 Jan; 19(1):134-45. PubMed ID: 18440947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automaticity of cognitive control: goal priming in response-inhibition paradigms.
    Verbruggen F; Logan GD
    J Exp Psychol Learn Mem Cogn; 2009 Sep; 35(5):1381-8. PubMed ID: 19686032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopping while going! Response inhibition does not suffer dual-task interference.
    Yamaguchi M; Logan GD; Bissett PG
    J Exp Psychol Hum Percept Perform; 2012 Feb; 38(1):123-34. PubMed ID: 21574740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher free testosterone level is associated with faster visual processing and more flanker interference in older men.
    Van Strien JW; Weber RF; Burdorf A; Bangma C
    Psychoneuroendocrinology; 2009 May; 34(4):546-54. PubMed ID: 19042092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.
    Stahl J; Gibbons H
    Clin Neurophysiol; 2007 Mar; 118(3):581-96. PubMed ID: 17188565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of task-relevant and task-irrelevant stimulus features in the number/size congruency paradigm: an ERP study.
    Szucs D; Soltész F
    Brain Res; 2008 Jan; 1190():143-58. PubMed ID: 18076868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for interaction between the stop signal and the Stroop task conflict.
    Kalanthroff E; Goldfarb L; Henik A
    J Exp Psychol Hum Percept Perform; 2013 Apr; 39(2):579-92. PubMed ID: 22390293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental trends in simple and selective inhibition of compatible and incompatible responses.
    van den Wildenberg WP; van der Molen MW
    J Exp Child Psychol; 2004 Mar; 87(3):201-20. PubMed ID: 14972598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological correlates of task conflicts in task-switching.
    Hsieh S; Liu H
    Brain Res; 2008 Apr; 1203():116-25. PubMed ID: 18314093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Goal-driven selective attention in patients with right hemisphere lesions: how intact is the ipsilesional field?
    Snow JC; Mattingley JB
    Brain; 2006 Jan; 129(Pt 1):168-81. PubMed ID: 16317021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm.
    Ramautar JR; Kok A; Ridderinkhof KR
    Biol Psychol; 2006 Apr; 72(1):96-109. PubMed ID: 16157441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional dissociation in right inferior frontal cortex during performance of go/no-go task.
    Chikazoe J; Jimura K; Asari T; Yamashita K; Morimoto H; Hirose S; Miyashita Y; Konishi S
    Cereb Cortex; 2009 Jan; 19(1):146-52. PubMed ID: 18445602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacity limits for face processing.
    Bindemann M; Burton AM; Jenkins R
    Cognition; 2005 Dec; 98(2):177-97. PubMed ID: 16307958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive factors analysis of inhibitory processing in the stop-signal paradigm.
    van den Wildenberg WP; van der Molen MW
    Brain Cogn; 2004 Nov; 56(2):253-66. PubMed ID: 15518939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of stop signal modality, stop signal intensity and tracking method on inhibitory performance as determined by use of the stop signal paradigm.
    van der Schoot M; Licht R; Horsley TM; Sergeant JA
    Scand J Psychol; 2005 Aug; 46(4):331-41. PubMed ID: 16014077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effects on response force in the stop-signal paradigm.
    Ko YT; Alsford T; Miller J
    J Exp Psychol Hum Percept Perform; 2012 Apr; 38(2):465-77. PubMed ID: 22288696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.