These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 16556570)
1. In situ evading of phagocytic uptake of stealth solid lipid nanoparticles by mouse peritoneal macrophages. Wang Y; Wu W Drug Deliv; 2006; 13(3):189-92. PubMed ID: 16556570 [TBL] [Abstract][Full Text] [Related]
2. Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles. Huang M; Wu W; Qian J; Wan DJ; Wei XL; Zhu JH Acta Pharmacol Sin; 2005 Dec; 26(12):1512-8. PubMed ID: 16297352 [TBL] [Abstract][Full Text] [Related]
3. Stealth tanshinone IIA-loaded solid lipid nanoparticles: effects of poloxamer 188 coating on in vitro phagocytosis and in vivo pharmacokinetics in rats. Zhang WL; Liu JP; Liu XX; Chen ZQ Yao Xue Xue Bao; 2009 Dec; 44(12):1421-8. PubMed ID: 21348419 [TBL] [Abstract][Full Text] [Related]
4. Preparation and evaluation of stealth Tashinone IIA-loaded solid lipid nanoparticles: Influence of Poloxamer 188 coating on phagocytic uptake. Zhang W; Liu J; Li S; Chen M; Liu H J Microencapsul; 2008 May; 25(3):203-9. PubMed ID: 18382927 [TBL] [Abstract][Full Text] [Related]
5. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of solid lipid nanoparticles containing silibinin. Zhang JQ; Liu J; Li XL; Jasti BR Drug Deliv; 2007 Aug; 14(6):381-7. PubMed ID: 17701527 [TBL] [Abstract][Full Text] [Related]
7. [9-nitrocamptothecin nanostructured lipid carrier system: in vitro releasing characteristics, uptake by cells, and tissue distribution in vivo]. Li JC; Sha XY; Zhang LJ; Fang XL Yao Xue Xue Bao; 2005 Nov; 40(11):970-5. PubMed ID: 16499078 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of paclitaxel delivery system based on semi-solid lipid nanoparticles coated with poly (ethylene glycol). Wu L; Tang C; Yin C Pharmazie; 2010 Jul; 65(7):493-9. PubMed ID: 20662317 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Yuan H; Wang LL; Du YZ; You J; Hu FQ; Zeng S Colloids Surf B Biointerfaces; 2007 Nov; 60(2):174-9. PubMed ID: 17656075 [TBL] [Abstract][Full Text] [Related]
10. Identification of polyethylene glycol-resistant macrophages on stealth imaging in vitro using fluorescent organosilica nanoparticles. Nakamura M; Hayashi K; Nakano M; Kanadani T; Miyamoto K; Kori T; Horikawa K ACS Nano; 2015 Feb; 9(2):1058-71. PubMed ID: 25629765 [TBL] [Abstract][Full Text] [Related]
11. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Fang C; Shi B; Pei YY; Hong MH; Wu J; Chen HZ Eur J Pharm Sci; 2006 Jan; 27(1):27-36. PubMed ID: 16150582 [TBL] [Abstract][Full Text] [Related]
12. [Influence of particle size and MePEG molecular weight on in vitro macrophage uptake and in vivo long circulating of stealth nanoparticles in rats]. Fang C; Shi B; Hong MH; Pei YY; Chen HZ Yao Xue Xue Bao; 2006 Apr; 41(4):305-12. PubMed ID: 16856473 [TBL] [Abstract][Full Text] [Related]
13. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Yuan H; Miao J; Du YZ; You J; Hu FQ; Zeng S Int J Pharm; 2008 Feb; 348(1-2):137-45. PubMed ID: 17714896 [TBL] [Abstract][Full Text] [Related]
14. Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Mohanty B; Majumdar DK; Mishra SK; Panda AK; Patnaik S Pharm Dev Technol; 2015 Jun; 20(4):458-64. PubMed ID: 24490828 [TBL] [Abstract][Full Text] [Related]
15. Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Abdel-Mottaleb MM; Neumann D; Lamprecht A Eur J Pharm Biopharm; 2011 Sep; 79(1):36-42. PubMed ID: 21558002 [TBL] [Abstract][Full Text] [Related]
16. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers. Mathaes R; Winter G; Besheer A; Engert J Int J Pharm; 2014 Apr; 465(1-2):159-64. PubMed ID: 24560647 [TBL] [Abstract][Full Text] [Related]
17. Improved anti-hyperlipidemic activity of Rosuvastatin Calcium via lipid nanoparticles: Pharmacokinetic and pharmacodynamic evaluation. Dudhipala N; Veerabrahma K Eur J Pharm Biopharm; 2017 Jan; 110():47-57. PubMed ID: 27810472 [TBL] [Abstract][Full Text] [Related]
18. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Roser M; Fischer D; Kissel T Eur J Pharm Biopharm; 1998 Nov; 46(3):255-63. PubMed ID: 9885296 [TBL] [Abstract][Full Text] [Related]
19. Stealth PEG-PHDCA niosomes: effects of chain length of PEG and particle size on niosomes surface properties, in vitro drug release, phagocytic uptake, in vivo pharmacokinetics and antitumor activity. Shi B; Fang C; Pei Y J Pharm Sci; 2006 Sep; 95(9):1873-87. PubMed ID: 16795003 [TBL] [Abstract][Full Text] [Related]
20. Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: Preparation, characterization and in vivo evaluation. Zhao Y; Chang YX; Hu X; Liu CY; Quan LH; Liao YH Int J Pharm; 2017 Jan; 516(1-2):364-371. PubMed ID: 27884712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]