BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1655681)

  • 1. Free radical production by the red tide alga, Chattonella antiqua.
    Shimada M; Akagi N; Nakai Y; Goto H; Watanabe M; Watanabe H; Nakanishi M; Yoshimatsu S; Ono C
    Histochem J; 1991 Aug; 23(8):361-5. PubMed ID: 1655681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diazo-reaction positive substance observed in the cortex of Chattonella antiqua.
    Shimada M; Shimono R; Imahayashi T; Ozaki HH; Murakami TH
    Histol Histopathol; 1986 Oct; 1(4):327-33. PubMed ID: 2980127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radical generation by red tide algae.
    Oda T; Akaike T; Sato K; Ishimatsu A; Takeshita S; Muramatsu T; Maeda H
    Arch Biochem Biophys; 1992 Apr; 294(1):38-43. PubMed ID: 1312810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some dinophycean red tide plankton species generate a superoxide scavenging substance.
    Sato E; Niwano Y; Matsuyama Y; Kim D; Nakashima T; Oda T; Kohno M
    Biosci Biotechnol Biochem; 2007 Mar; 71(3):704-10. PubMed ID: 17341831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of superoxide anion in the red tide alga Chattonella antiqua.
    Shimada M; Kawamoto S; Nakatsuka Y; Watanabe M
    J Histochem Cytochem; 1993 Apr; 41(4):507-11. PubMed ID: 8383714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.
    Dorantes-Aranda JJ; Seger A; Mardones JI; Nichols PD; Hallegraeff GM
    PLoS One; 2015; 10(7):e0133549. PubMed ID: 26197230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of superoxide anion generation in the toxic red tide phytoplankton Chattonella marina: possible involvement of NAD(P)H oxidase.
    Kim D; Nakamura A; Okamoto T; Komatsu N; Oda T; Iida T; Ishimatsu A; Muramatsu T
    Biochim Biophys Acta; 2000 Dec; 1524(2-3):220-7. PubMed ID: 11113571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of oxygen radical scavengers and assessment of free radical scavenger efficiency using luminol enhanced chemiluminescence.
    Rao PS; Luber JM; Milinowicz J; Lalezari P; Mueller HS
    Biochem Biophys Res Commun; 1988 Jan; 150(1):39-44. PubMed ID: 2827676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of superoxide anion and hydrogen peroxide by the red tide dinoflagellate Karenia mikimotoi.
    Yamasaki Y; Kim DI; Matsuyama Y; Oda T; Honjo T
    J Biosci Bioeng; 2004; 97(3):212-5. PubMed ID: 16233617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular secretion of superoxide is regulated by photosynthetic electron transport in the noxious red-tide-forming raphidophyte Chattonella antiqua.
    Yuasa K; Shikata T; Kitatsuji S; Yamasaki Y; Nishiyama Y
    J Photochem Photobiol B; 2020 Apr; 205():111839. PubMed ID: 32146272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton.
    Kim D; Oda T; Muramatsu T; Kim D; Matsuyama Y; Honjo T
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Aug; 132(4):415-23. PubMed ID: 12223197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative studies on the fish-killing activities of Chattonella marina isolated in 1985 and Chattonella antiqua isolated in 2010, and their possible toxic factors.
    Cho K; Sakamoto J; Noda T; Nishiguchi T; Ueno M; Yamasaki Y; Yagi M; Kim D; Oda T
    Biosci Biotechnol Biochem; 2016; 80(4):811-7. PubMed ID: 26654750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Role of active forms of oxygen in inducing luminol-dependent chemiluminescence in macrophages].
    Tokmanov AA; Vasil'ev VIu
    Biokhimiia; 1991 Feb; 56(2):250-7. PubMed ID: 1873342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of reactive oxygen species by raphidophycean phytoplankton.
    Oda T; Nakamura A; Shikayama M; Kawano I; Ishimatsu A; Muramatsu T
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1658-62. PubMed ID: 9362113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemiluminescence of luminol caused by interaction of cytochrome P-450 and cytochrome C with cumene hydroperoxide: comparative studies.
    Akhrem AA; Semenkova GN; Cherenkevich SN; Popova YM; Kiselev PA
    Biomed Biochim Acta; 1985; 44(11-12):1591-7. PubMed ID: 3004423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions.
    Radi RA; Rubbo H; Prodanov E
    Biochim Biophys Acta; 1989 Jan; 994(1):89-93. PubMed ID: 2535790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of oxygen radicals by articular chondrocytes: a study of luminol-dependent chemiluminescence and hydrogen peroxide secretion.
    Rathakrishnan C; Tiku K; Raghavan A; Tiku ML
    J Bone Miner Res; 1992 Oct; 7(10):1139-48. PubMed ID: 1280902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen radical production during ischemia-reperfusion in the isolated perfused rat liver as monitored by luminol enhanced chemiluminescence.
    Okuda M; Ikai I; Chance B; Kumar C
    Biochem Biophys Res Commun; 1991 Jan; 174(1):217-21. PubMed ID: 1989601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescence as an index of drug-induced free radical production in pancreatic islets.
    Asayama K; English D; Slonim AE; Burr IM
    Diabetes; 1984 Feb; 33(2):160-3. PubMed ID: 6229439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lucigenin-dependent chemiluminescence in articular chondrocytes.
    Rathakrishnan C; Tiku ML
    Free Radic Biol Med; 1993 Aug; 15(2):143-9. PubMed ID: 8397140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.