These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 16556834)
21. High yield assembly and electron transport investigation of semiconducting-rich local-gated single-walled carbon nanotube field effect transistors. Kormondy KJ; Stokes P; Khondaker SI Nanotechnology; 2011 Oct; 22(41):415201. PubMed ID: 21914942 [TBL] [Abstract][Full Text] [Related]
22. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Cao Q; Kim HS; Pimparkar N; Kulkarni JP; Wang C; Shim M; Roy K; Alam MA; Rogers JA Nature; 2008 Jul; 454(7203):495-500. PubMed ID: 18650920 [TBL] [Abstract][Full Text] [Related]
23. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices. Ryu H; Kälblein D; Weitz RT; Ante F; Zschieschang U; Kern K; Schmidt OG; Klauk H Nanotechnology; 2010 Nov; 21(47):475207. PubMed ID: 21030776 [TBL] [Abstract][Full Text] [Related]
24. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes. Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007 [TBL] [Abstract][Full Text] [Related]
25. Electrical transport properties of single wall carbon nanotube/polyurethane composite based field effect transistors fabricated by UV-assisted direct-writing technology. Aïssa B; Therriault D; Farahani RD; Lebel LL; El Khakani MA Nanotechnology; 2012 Mar; 23(11):115705. PubMed ID: 22382044 [TBL] [Abstract][Full Text] [Related]
26. Piperidine induced polarity conversion in single-walled carbon nanotube field effect transistors. Raj K; Zhang Q; Liu C; Park MB Nanotechnology; 2011 Jun; 22(24):245306. PubMed ID: 21543830 [TBL] [Abstract][Full Text] [Related]
27. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly. Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067 [TBL] [Abstract][Full Text] [Related]
28. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Duan X; Huang Y; Cui Y; Wang J; Lieber CM Nature; 2001 Jan; 409(6816):66-9. PubMed ID: 11343112 [TBL] [Abstract][Full Text] [Related]
29. Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing. Boussaad S; Diner BA; Fan J J Am Chem Soc; 2008 Mar; 130(12):3780-7. PubMed ID: 18321094 [TBL] [Abstract][Full Text] [Related]
30. A soluble and air-stable organic semiconductor with high electron mobility. Katz HE; Lovinger AJ; Johnson J; Kloc C; Siegrist T; Li W; Lin YY; Dodabalapur A Nature; 2000 Mar; 404(6777):478-81. PubMed ID: 10761911 [TBL] [Abstract][Full Text] [Related]
31. Complementary logic gate arrays based on carbon nanotube network transistors. Gao P; Zou J; Li H; Zhang K; Zhang Q Small; 2013 Mar; 9(6):813-9. PubMed ID: 23208943 [TBL] [Abstract][Full Text] [Related]
32. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. Wang C; Zhang J; Zhou C ACS Nano; 2010 Dec; 4(12):7123-32. PubMed ID: 21062091 [TBL] [Abstract][Full Text] [Related]
33. The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications. Chen CL; Agarwal V; Sonkusale S; Dokmeci MR Nanotechnology; 2009 Jun; 20(22):225302. PubMed ID: 19433877 [TBL] [Abstract][Full Text] [Related]
34. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors. Fu Q; Liu J J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676 [TBL] [Abstract][Full Text] [Related]
35. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. Yang Y; Ding L; Han J; Zhang Z; Peng LM ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433 [TBL] [Abstract][Full Text] [Related]
36. Investigations of niobium carbide contact for carbon-nanotube-based devices. Huang L; Chor EF; Wu Y; Guo Z Nanotechnology; 2010 Mar; 21(9):095201. PubMed ID: 20110580 [TBL] [Abstract][Full Text] [Related]
37. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes. Qi P; Javey A; Rolandi M; Wang Q; Yenilmez E; Dai H J Am Chem Soc; 2004 Sep; 126(38):11774-5. PubMed ID: 15382895 [TBL] [Abstract][Full Text] [Related]
38. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Liu L; Han J; Xu L; Zhou J; Zhao C; Ding S; Shi H; Xiao M; Ding L; Ma Z; Jin C; Zhang Z; Peng LM Science; 2020 May; 368(6493):850-856. PubMed ID: 32439787 [TBL] [Abstract][Full Text] [Related]
39. DC modeling and the source of flicker noise in passivated carbon nanotube transistors. Kim S; Kim S; Janes DB; Mohammadi S; Back J; Shim M Nanotechnology; 2010 Sep; 21(38):385203. PubMed ID: 20798468 [TBL] [Abstract][Full Text] [Related]