These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Failure to generate action potentials in newborn diaphragms following nerve stimulation. Bazzy AR; Donnelly DF Brain Res; 1993 Jan; 600(2):349-52. PubMed ID: 8382101 [TBL] [Abstract][Full Text] [Related]
7. Fatigue of isolated rat diaphragm: role of impaired neuromuscular transmission. Aldrich TK; Shander A; Chaudhry I; Nagashima H J Appl Physiol (1985); 1986 Sep; 61(3):1077-83. PubMed ID: 3019989 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of mobilization of acetylcholine: the weak link in neuromuscular transmission during partial neuromuscular block with d-tubocurarine. Foldes FF; Chaudhry IA; Kinjo M; Nagashima H Anesthesiology; 1989 Aug; 71(2):218-23. PubMed ID: 2547326 [TBL] [Abstract][Full Text] [Related]
9. Inhibition by local anaesthetic drugs at low and high stimulation frequencies. A comparison between the isolated phrenic nerve of the rat and the phrenic nerve-diaphragm preparation. Brodin P; Røed A Neuropharmacology; 1984 Jan; 23(1):83-8. PubMed ID: 6325986 [TBL] [Abstract][Full Text] [Related]
11. Effects of DAP on diaphragm force and fatigue, including fatigue due to neurotransmission failure. Van Lunteren E; Moyer M J Appl Physiol (1985); 1996 Nov; 81(5):2214-20. PubMed ID: 8941547 [TBL] [Abstract][Full Text] [Related]
12. Stimulation-dependent release, breakdown, and action of endogenous ATP in mouse hemidiaphragm preparation: the possible role of ATP in neuromuscular transmission. Vizi ES; Nitahara K; Sato K; Sperlágh B J Auton Nerv Syst; 2000 Jul; 81(1-3):278-84. PubMed ID: 10869732 [TBL] [Abstract][Full Text] [Related]
13. Neuromuscular transmission failure during postnatal development. Fournier M; Alula M; Sieck GC Neurosci Lett; 1991 Apr; 125(1):34-6. PubMed ID: 1649983 [TBL] [Abstract][Full Text] [Related]
14. Effect of muscle length on electromyogram in a canine diaphragm strip preparation. Kim MJ; Druz WS; Sharp JT J Appl Physiol (1985); 1985 May; 58(5):1602-7. PubMed ID: 2987177 [TBL] [Abstract][Full Text] [Related]
15. Contractile and fatigue properties of the rat diaphragm musculature during the perinatal period. Martin-Caraballo M; Campagnaro PA; Gao Y; Greer JJ J Appl Physiol (1985); 2000 Feb; 88(2):573-80. PubMed ID: 10658025 [TBL] [Abstract][Full Text] [Related]
17. Force-frequency relationships of in vivo human and in vitro rat diaphragm using paired stimuli. Yan S; Gauthier AP; Similowski T; Faltus R; Macklem PT; Bellemare F Eur Respir J; 1993 Feb; 6(2):211-8. PubMed ID: 8444292 [TBL] [Abstract][Full Text] [Related]
18. Impaired neuromuscular transmission during partial inhibition of acetylcholinesterase: the role of stimulus-induced antidromic backfiring in the generation of the decrement-increment phenomenon. Besser R; Vogt T; Gutmann L; Hopf HC; Wessler I Muscle Nerve; 1992 Oct; 15(10):1072-80. PubMed ID: 1328879 [TBL] [Abstract][Full Text] [Related]
19. Fatigue during continuous 20 Hz stimulation of the rat phrenic nerve diaphragm preparation. Røed A Acta Physiol Scand; 1988 Oct; 134(2):217-21. PubMed ID: 3227944 [TBL] [Abstract][Full Text] [Related]
20. The effect of caffeine on diaphragmatic muscle force in normal hamsters. Wittmann TA; Kelsen SG Am Rev Respir Dis; 1982 Sep; 126(3):499-504. PubMed ID: 6289707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]