These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 16556981)
1. Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Tsujimura S; Kojima S; Kano K; Ikeda T; Sato M; Sanada H; Omura H Biosci Biotechnol Biochem; 2006 Mar; 70(3):654-9. PubMed ID: 16556981 [TBL] [Abstract][Full Text] [Related]
2. Orientated Immobilization of FAD-Dependent Glucose Dehydrogenase on Electrode by Carbohydrate-Binding Module Fusion for Efficient Glucose Assay. Han Q; Gong W; Zhang Z; Wang L; Wang B; Cai L; Meng Q; Li Y; Liu Q; Yang Y; Zheng L; Ma Y Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073858 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Milton RD; Giroud F; Thumser AE; Minteer SD; Slade RC Phys Chem Chem Phys; 2013 Nov; 15(44):19371-9. PubMed ID: 24121716 [TBL] [Abstract][Full Text] [Related]
4. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide. Lee H; Lee YS; Reginald SS; Baek S; Lee EM; Choi IG; Chang IS Biosens Bioelectron; 2020 Oct; 165():112427. PubMed ID: 32729543 [TBL] [Abstract][Full Text] [Related]
5. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum. Milton RD; Lim K; Hickey DP; Minteer SD Bioelectrochemistry; 2015 Dec; 106(Pt A):56-63. PubMed ID: 25890695 [TBL] [Abstract][Full Text] [Related]
6. Effects of Cross-linker Chemistry on Bioelectrocatalytic Reactions in a Redox Cross-linked Network of Glucose Dehydrogenase and Thionine. Hossain MM; Rezki M; Shalayel I; Zebda A; Tsujimura S ACS Appl Mater Interfaces; 2024 Aug; 16(33):44004-44017. PubMed ID: 39132979 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Ishida K; Orihara K; Muguruma H; Iwasa H; Hiratsuka A; Tsuji K; Kishimoto T Anal Sci; 2018; 34(7):783-787. PubMed ID: 29998959 [TBL] [Abstract][Full Text] [Related]
8. A disposable tear glucose biosensor--part 3: assessment of enzymatic specificity. Lan K; McAferty K; Shah P; Lieberman E; Patel DR; Cook CB; La Belle JT J Diabetes Sci Technol; 2011 Sep; 5(5):1108-15. PubMed ID: 22027303 [TBL] [Abstract][Full Text] [Related]
10. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain. Algov I; Grushka J; Zarivach R; Alfonta L J Am Chem Soc; 2017 Dec; 139(48):17217-17220. PubMed ID: 28915057 [TBL] [Abstract][Full Text] [Related]
11. Disposable electrochemical glucose sensor based on water-soluble quinone-based mediators with flavin adenine dinucleotide-dependent glucose dehydrogenase. Morshed J; Nakagawa R; Hossain MM; Nishina Y; Tsujimura S Biosens Bioelectron; 2021 Oct; 189():113357. PubMed ID: 34051384 [TBL] [Abstract][Full Text] [Related]
12. Biocomposite based on reduced graphene oxide film modified with phenothiazone and flavin adenine dinucleotide-dependent glucose dehydrogenase for glucose sensing and biofuel cell applications. Ravenna Y; Xia L; Gun J; Mikhaylov AA; Medvedev AG; Lev O; Alfonta L Anal Chem; 2015 Oct; 87(19):9567-71. PubMed ID: 26334692 [TBL] [Abstract][Full Text] [Related]
13. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers. Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433 [TBL] [Abstract][Full Text] [Related]
15. FAD-Dependent Glucose Dehydrogenase Immobilization and Mediation Within a Naphthoquinone Redox Polymer. Milton RD Methods Mol Biol; 2017; 1504():193-202. PubMed ID: 27770423 [TBL] [Abstract][Full Text] [Related]
16. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Ito Y; Okuda-Shimazaki J; Tsugawa W; Loew N; Shitanda I; Lin CE; La Belle J; Sode K Biosens Bioelectron; 2019 Mar; 129():189-197. PubMed ID: 30721794 [TBL] [Abstract][Full Text] [Related]
17. Utilization of FAD-Glucose Dehydrogenase from Cohen R; Bitton RE; Herzallh NS; Cohen Y; Yehezkeli O Anal Chem; 2021 Aug; 93(33):11585-11591. PubMed ID: 34383460 [TBL] [Abstract][Full Text] [Related]
18. Diffusion-controlled Mediated Electron Transfer-type Bioelectrocatalysis Using Microband Electrodes as Ultimate Amperometric Glucose Sensors. Matsui Y; Hamamoto K; Kitazumi Y; Shirai O; Kano K Anal Sci; 2017; 33(7):845-851. PubMed ID: 28690264 [TBL] [Abstract][Full Text] [Related]
19. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips. Sode K; Loew N; Ohnishi Y; Tsuruta H; Mori K; Kojima K; Tsugawa W; LaBelle JT; Klonoff DC Biosens Bioelectron; 2017 Jan; 87():305-311. PubMed ID: 27573296 [TBL] [Abstract][Full Text] [Related]
20. Structural analysis of fungus-derived FAD glucose dehydrogenase. Yoshida H; Sakai G; Mori K; Kojima K; Kamitori S; Sode K Sci Rep; 2015 Aug; 5():13498. PubMed ID: 26311535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]