These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16557356)

  • 41. Relative sensitivity of an amphipod Hyalella azteca, a midge Chironomus dilutus, and a unionid mussel Lampsilis siliquoidea to a toxic sediment.
    Ingersoll CG; Kunz JL; Hughes JP; Wang N; Ireland DS; Mount DR; Hockett JR; Valenti TW
    Environ Toxicol Chem; 2015 May; 34(5):1134-44. PubMed ID: 25655578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Habitat selection by chironomid larvae: fast growth requires fast food.
    De Haas EM; Wagner C; Koelmans AA; Kraak MH; Admiraal W
    J Anim Ecol; 2006 Jan; 75(1):148-55. PubMed ID: 16903052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diptera, Chironomidae).
    Lee SB; Choi J
    Environ Toxicol Chem; 2006 Nov; 25(11):3006-14. PubMed ID: 17089725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toxicant mixtures in sediment alter gene expression in the cysteine metabolism of Chironomus tepperi.
    Jeppe KJ; Carew ME; Pettigrove V; Hoffmann AA
    Environ Toxicol Chem; 2017 Mar; 36(3):691-698. PubMed ID: 27474893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exposure to sediments from polluted rivers has limited phenotypic effects on larvae and adults of Chironomus riparius.
    Arambourou H; Beisel JN; Branchu P; Debat V
    Sci Total Environ; 2014 Jun; 484():92-101. PubMed ID: 24691209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Life-cycle effects of sediment-associated 2,4,5-trichlorophenol on two groups of the midge Chironomus riparius with different exposure histories.
    Ristola T; Parker D; Kukkonen JV
    Environ Toxicol Chem; 2001 Aug; 20(8):1772-7. PubMed ID: 11491561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphological abnormalities in Chironomus tentans exposed to cadmium-and copper-spiked sediments.
    Martinez EA; Moore BC; Schaumloffel J; Dasgupta N
    Ecotoxicol Environ Saf; 2003 Jun; 55(2):204-12. PubMed ID: 12742370
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies.
    Di Veroli A; Santoro F; Pallottini M; Selvaggi R; Scardazza F; Cappelletti D; Goretti E
    Chemosphere; 2014 Oct; 112():9-17. PubMed ID: 25048882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of exposure to high concentrations of waterborne Tl on K and Tl concentrations in Chironomus riparius larvae.
    Belowitz R; Leonard EM; O'Donnell MJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2014 Nov; 166():59-64. PubMed ID: 25046737
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptional responses, metabolic activity and mouthpart deformities in natural populations of Chironomus riparius larvae exposed to environmental pollutants.
    Planelló R; Servia MJ; Gómez-Sande P; Herrero Ó; Cobo F; Morcillo G
    Environ Toxicol; 2015 Apr; 30(4):383-95. PubMed ID: 23893657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparative study of Chironomus riparius Meigen and Chironomus tentans Fabricius (diptera:chironomidae) in aquatic toxicity tests.
    Watts MM; Pascoe D
    Arch Environ Contam Toxicol; 2000 Oct; 39(3):299-306. PubMed ID: 10948279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment.
    Xia X; Chen X; Zhao X; Chen H; Shen M
    Environ Sci Technol; 2012 Nov; 46(22):12467-75. PubMed ID: 23121516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioavailability, toxicity and biotransformation of selenium in midge (Chironomus dilutus) larvae exposed via water or diet to elemental selenium particles, selenite, or selenized algae.
    Gallego-Gallegos M; Doig LE; Tse JJ; Pickering IJ; Liber K
    Environ Sci Technol; 2013 Jan; 47(1):584-92. PubMed ID: 23234498
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chironomus sancticaroli (Diptera, Chironomidae) as a Sensitive Tropical Test Species in Laboratory Bioassays Evaluating Metals (Copper and Cadmium) and Field Testing.
    Dornfeld CB; Rodgher S; Negri RG; Espíndola ELG; Daam MA
    Arch Environ Contam Toxicol; 2019 Jan; 76(1):42-50. PubMed ID: 30349930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toxicity of organic UV-filters to the aquatic midge Chironomus riparius.
    Campos D; Gravato C; Quintaneiro C; Golovko O; Žlábek V; Soares AMVM; Pestana JLT
    Ecotoxicol Environ Saf; 2017 Sep; 143():210-216. PubMed ID: 28551578
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of cholinesterases in Chironomus riparius and the effects of three herbicides on chlorpyrifos toxicity.
    Pérez J; Monteiro MS; Quintaneiro C; Soares AM; Loureiro S
    Aquat Toxicol; 2013 Nov; 144-145():296-302. PubMed ID: 24211793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting the bioavailability of sediment-bound uranium to the freshwater midge (Chironomus dilutus) using physicochemical properties.
    Crawford SE; Lofts S; Liber K
    Environ Toxicol Chem; 2018 Apr; 37(4):1146-1157. PubMed ID: 29236329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing the toxicity of dodecylbenzene sulfonate to the midge Chironomus riparius using body residues as the dose metric.
    Hwang H; Fisher SW; Kim K; Landrum PF; Larson RJ; Versteeg DJ
    Environ Toxicol Chem; 2003 Feb; 22(2):302-12. PubMed ID: 12558161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Consequences of inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge Chironomus riparius.
    Nowak C; Jost D; Vogt C; Oetken M; Schwenk K; Oehlmann J
    Aquat Toxicol; 2007 Dec; 85(4):278-84. PubMed ID: 17981347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An in situ assessment of selenium bioaccumulation from water-, sediment-, and dietary-exposure pathways using caged Chironomus dilutus larvae.
    Franz ED; Wiramanaden CI; Gallego-Gallegos M; Tse JJ; Phibbs J; Janz DM; Pickering IJ; Liber K
    Environ Toxicol Chem; 2013 Dec; 32(12):2836-48. PubMed ID: 23996699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.