These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 1655739)
1. Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes. de Crécy-Lagard V; Bouvet OM; Lejeune P; Danchin A J Biol Chem; 1991 Sep; 266(27):18154-61. PubMed ID: 1655739 [TBL] [Abstract][Full Text] [Related]
2. Identification of two fructose transport and phosphorylation pathways in Xanthomonas campestris pv. campestris. de Crécy-Lagard V; Lejeune P; Bouvet OM; Danchin A Mol Gen Genet; 1991 Jul; 227(3):465-72. PubMed ID: 1650911 [TBL] [Abstract][Full Text] [Related]
3. Fructose phosphotransferase system of Xanthomonas campestris pv. campestris: characterization of the fruB gene. de Crécy-Lagard V; Binet M; Danchin A Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2253-60. PubMed ID: 7496537 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: evidence for a kinase superfamily including both phosphofructokinases of Escherichia coli. Wu LF; Reizer A; Reizer J; Cai B; Tomich JM; Saier MH J Bacteriol; 1991 May; 173(10):3117-27. PubMed ID: 1850730 [TBL] [Abstract][Full Text] [Related]
5. Nucleotide sequence of the fruA gene, encoding the fructose permease of the Rhodobacter capsulatus phosphotransferase system, and analyses of the deduced protein sequence. Wu LF; Saier MH J Bacteriol; 1990 Dec; 172(12):7167-78. PubMed ID: 2254279 [TBL] [Abstract][Full Text] [Related]
6. Fructose utilization and pathogenicity of Spiroplasma citri: characterization of the fructose operon. Gaurivaud P; Laigret F; Garnier M; Bove JM Gene; 2000 Jul; 252(1-2):61-9. PubMed ID: 10903438 [TBL] [Abstract][Full Text] [Related]
7. Sequence similarities between the gene specifying 1-phosphofructokinase (fruK), genes specifying other kinases in Escherichia coli K12, and lacC of Staphylococcus aureus. Orchard LM; Kornberg HL Proc Biol Sci; 1990 Nov; 242(1304):87-90. PubMed ID: 1981619 [TBL] [Abstract][Full Text] [Related]
8. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. Loo CY; Mitrakul K; Voss IB; Hughes CV; Ganeshkumar N J Bacteriol; 2003 Nov; 185(21):6241-54. PubMed ID: 14563858 [TBL] [Abstract][Full Text] [Related]
10. Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon. Daniels GA; Drews G; Saier MH J Bacteriol; 1988 Apr; 170(4):1698-703. PubMed ID: 2832374 [TBL] [Abstract][Full Text] [Related]
11. On the evolutionary origins of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Wu LF; Saier MH Mol Microbiol; 1990 Jul; 4(7):1219-22. PubMed ID: 2172696 [TBL] [Abstract][Full Text] [Related]
12. Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. Wu LF; Tomich JM; Saier MH J Mol Biol; 1990 Jun; 213(4):687-703. PubMed ID: 2193161 [TBL] [Abstract][Full Text] [Related]
13. The PEP: fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Geerse RH; Izzo F; Postma PW Mol Gen Genet; 1989 Apr; 216(2-3):517-25. PubMed ID: 2546043 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and nucleotide sequence of the gene for pyruvate kinase of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli. Evidence that the genes for phosphofructokinase and pyruvate kinase constitute an operon. Sakai H; Ohta T Eur J Biochem; 1993 Feb; 211(3):851-9. PubMed ID: 8436141 [TBL] [Abstract][Full Text] [Related]
15. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G J Mol Biol; 1990 Aug; 214(3):657-71. PubMed ID: 2117666 [TBL] [Abstract][Full Text] [Related]
16. Novel phosphotransferase system genes revealed by bacterial genome analysis: unique, putative fructose- and glucoside-specific systems. Reizer J; Michotey V; Reizer A; Saier MH Protein Sci; 1994 Mar; 3(3):440-50. PubMed ID: 8019415 [TBL] [Abstract][Full Text] [Related]
17. A novel mutation FruS, altering synthesis of components of the phosphoenolpyruvate: fructose phosphotransferase system in Escherichia coli K12. Bolshakova TN; Molchanova ML; Erlagaeva RS; Grigorenko YA; Gershanovitch VN Mol Gen Genet; 1992 Apr; 232(3):394-8. PubMed ID: 1534139 [TBL] [Abstract][Full Text] [Related]
18. A new gene expression system based on a fructose-dependent promoter from Rhodobacter capsulatus. Duport C; Meyer C; Naud I; Jouanneau Y Gene; 1994 Jul; 145(1):103-8. PubMed ID: 8045407 [TBL] [Abstract][Full Text] [Related]
19. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Zhu PP; Reizer J; Peterkofsky A Protein Sci; 1994 Nov; 3(11):2115-28. PubMed ID: 7703858 [TBL] [Abstract][Full Text] [Related]
20. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]