BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 16557623)

  • 1. Practical highly enantioselective synthesis of propargylamines through a copper-catalyzed one-pot three-component condensation reaction.
    Gommermann N; Knochel P
    Chemistry; 2006 May; 12(16):4380-92. PubMed ID: 16557623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of enantiomerically enriched propargylamines by copper-catalyzed addition of alkynes to enamines.
    Koradin C; Gommermann N; Polborn K; Knochel P
    Chemistry; 2003 Jun; 9(12):2797-2811. PubMed ID: 12866545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-catalyzed enantioselective three-component synthesis of optically active propargylamines from aldehydes, amines, and aliphatic alkynes.
    Nakamura S; Ohara M; Nakamura Y; Shibata N; Toru T
    Chemistry; 2010 Feb; 16(8):2360-2. PubMed ID: 20108286
    [No Abstract]   [Full Text] [Related]  

  • 4. An efficient synthesis of propargylamines via C-H activation catalyzed by copper(I) in ionic liquids.
    Park SB; Alper H
    Chem Commun (Camb); 2005 Mar; (10):1315-7. PubMed ID: 15742063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct enantioselective three-component synthesis of optically active propargylamines in water.
    Ohara M; Hara Y; Ohnuki T; Nakamura S
    Chemistry; 2014 Jul; 20(29):8848-51. PubMed ID: 24919989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly enantioselective access to primary propargylamines: 4-piperidinone as a convenient protecting group.
    Aschwanden P; Stephenson CR; Carreira EM
    Org Lett; 2006 May; 8(11):2437-40. PubMed ID: 16706545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unprecedented Cu(I)-catalyzed microwave-assisted three-component coupling of a ketone, an alkyne, and a primary amine.
    Pereshivko OP; Peshkov VA; Van der Eycken EV
    Org Lett; 2010 Jun; 12(11):2638-41. PubMed ID: 20441203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for the preparation of propargylamines using molecular sieve modified with copper(II).
    Fodor A; Kiss A; Debreczeni N; Hell Z; Gresits I
    Org Biomol Chem; 2010 Oct; 8(20):4575-81. PubMed ID: 20740243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles.
    Aguilar D; Contel M; Urriolabeitia EP
    Chemistry; 2010 Aug; 16(30):9287-96. PubMed ID: 20583055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper(I) halide promoted diastereoselective synthesis of chiral propargylamines and chiral allenes using 2-dialkylaminomethylpyrrolidine, aldehydes, and 1-alkynes.
    Gurubrahamam R; Periasamy M
    J Org Chem; 2013 Feb; 78(4):1463-70. PubMed ID: 23320792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold(III) Salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction.
    Lo VK; Liu Y; Wong MK; Che CM
    Org Lett; 2006 Apr; 8(8):1529-32. PubMed ID: 16597102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An easily removable stereo-dictating group for enantioselective synthesis of propargylic amines.
    Fan W; Ma S
    Chem Commun (Camb); 2013 Oct; 49(86):10175-7. PubMed ID: 24051867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions.
    González-Béjar M; Peters K; Hallett-Tapley GL; Grenier M; Scaiano JC
    Chem Commun (Camb); 2013 Feb; 49(17):1732-4. PubMed ID: 23340772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient ruthenium and copper cocatalzyed five-component coupling to form dipropargyl amines under mild conditions in water.
    Bonfield ER; Li CJ
    Org Biomol Chem; 2007 Feb; 5(3):435-7. PubMed ID: 17252122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoselective C-H bond activation: ligand and solvent free iron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes. Reaction scope and mechanism.
    Volla CM; Vogel P
    Org Lett; 2009 Apr; 11(8):1701-4. PubMed ID: 19296636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective synthesis of propargylamines through Zr-catalyzed addition of mixed alkynylzinc reagents to arylimines.
    Traverse JF; Hoveyda AH; Snapper ML
    Org Lett; 2003 Sep; 5(18):3273-5. PubMed ID: 12943405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Very mild, enantioselective synthesis of propargylamines catalyzed by copper(I)-bisimine complexes.
    Colombo F; Benaglia M; Orlandi S; Usuelli F; Celentano G
    J Org Chem; 2006 Mar; 71(5):2064-70. PubMed ID: 16496994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical highly enantioselective synthesis of terminal propargylamines. An expeditious synthesis of (S)-(+)-coniine.
    Gommermann N; Knochel P
    Chem Commun (Camb); 2004 Oct; (20):2324-5. PubMed ID: 15490002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Asymmetric A³(Aldehyde⁻Alkyne⁻Amine) Coupling: Highly Enantioselective Access to Propargylamines.
    Mo JN; Su J; Zhao J
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30925732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CuBr for KA(2) reaction: en route to propargylic amines bearing a quaternary carbon center.
    Tang X; Kuang J; Ma S
    Chem Commun (Camb); 2013 Oct; 49(79):8976-8. PubMed ID: 23962962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.