These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 16557623)

  • 1. Practical highly enantioselective synthesis of propargylamines through a copper-catalyzed one-pot three-component condensation reaction.
    Gommermann N; Knochel P
    Chemistry; 2006 May; 12(16):4380-92. PubMed ID: 16557623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of enantiomerically enriched propargylamines by copper-catalyzed addition of alkynes to enamines.
    Koradin C; Gommermann N; Polborn K; Knochel P
    Chemistry; 2003 Jun; 9(12):2797-2811. PubMed ID: 12866545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-catalyzed enantioselective three-component synthesis of optically active propargylamines from aldehydes, amines, and aliphatic alkynes.
    Nakamura S; Ohara M; Nakamura Y; Shibata N; Toru T
    Chemistry; 2010 Feb; 16(8):2360-2. PubMed ID: 20108286
    [No Abstract]   [Full Text] [Related]  

  • 4. An efficient synthesis of propargylamines via C-H activation catalyzed by copper(I) in ionic liquids.
    Park SB; Alper H
    Chem Commun (Camb); 2005 Mar; (10):1315-7. PubMed ID: 15742063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct enantioselective three-component synthesis of optically active propargylamines in water.
    Ohara M; Hara Y; Ohnuki T; Nakamura S
    Chemistry; 2014 Jul; 20(29):8848-51. PubMed ID: 24919989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly enantioselective access to primary propargylamines: 4-piperidinone as a convenient protecting group.
    Aschwanden P; Stephenson CR; Carreira EM
    Org Lett; 2006 May; 8(11):2437-40. PubMed ID: 16706545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unprecedented Cu(I)-catalyzed microwave-assisted three-component coupling of a ketone, an alkyne, and a primary amine.
    Pereshivko OP; Peshkov VA; Van der Eycken EV
    Org Lett; 2010 Jun; 12(11):2638-41. PubMed ID: 20441203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for the preparation of propargylamines using molecular sieve modified with copper(II).
    Fodor A; Kiss A; Debreczeni N; Hell Z; Gresits I
    Org Biomol Chem; 2010 Oct; 8(20):4575-81. PubMed ID: 20740243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles.
    Aguilar D; Contel M; Urriolabeitia EP
    Chemistry; 2010 Aug; 16(30):9287-96. PubMed ID: 20583055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper(I) halide promoted diastereoselective synthesis of chiral propargylamines and chiral allenes using 2-dialkylaminomethylpyrrolidine, aldehydes, and 1-alkynes.
    Gurubrahamam R; Periasamy M
    J Org Chem; 2013 Feb; 78(4):1463-70. PubMed ID: 23320792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold(III) Salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction.
    Lo VK; Liu Y; Wong MK; Che CM
    Org Lett; 2006 Apr; 8(8):1529-32. PubMed ID: 16597102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An easily removable stereo-dictating group for enantioselective synthesis of propargylic amines.
    Fan W; Ma S
    Chem Commun (Camb); 2013 Oct; 49(86):10175-7. PubMed ID: 24051867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions.
    González-Béjar M; Peters K; Hallett-Tapley GL; Grenier M; Scaiano JC
    Chem Commun (Camb); 2013 Feb; 49(17):1732-4. PubMed ID: 23340772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient ruthenium and copper cocatalzyed five-component coupling to form dipropargyl amines under mild conditions in water.
    Bonfield ER; Li CJ
    Org Biomol Chem; 2007 Feb; 5(3):435-7. PubMed ID: 17252122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoselective C-H bond activation: ligand and solvent free iron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes. Reaction scope and mechanism.
    Volla CM; Vogel P
    Org Lett; 2009 Apr; 11(8):1701-4. PubMed ID: 19296636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective synthesis of propargylamines through Zr-catalyzed addition of mixed alkynylzinc reagents to arylimines.
    Traverse JF; Hoveyda AH; Snapper ML
    Org Lett; 2003 Sep; 5(18):3273-5. PubMed ID: 12943405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Very mild, enantioselective synthesis of propargylamines catalyzed by copper(I)-bisimine complexes.
    Colombo F; Benaglia M; Orlandi S; Usuelli F; Celentano G
    J Org Chem; 2006 Mar; 71(5):2064-70. PubMed ID: 16496994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical highly enantioselective synthesis of terminal propargylamines. An expeditious synthesis of (S)-(+)-coniine.
    Gommermann N; Knochel P
    Chem Commun (Camb); 2004 Oct; (20):2324-5. PubMed ID: 15490002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Asymmetric A³(Aldehyde⁻Alkyne⁻Amine) Coupling: Highly Enantioselective Access to Propargylamines.
    Mo JN; Su J; Zhao J
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30925732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CuBr for KA(2) reaction: en route to propargylic amines bearing a quaternary carbon center.
    Tang X; Kuang J; Ma S
    Chem Commun (Camb); 2013 Oct; 49(79):8976-8. PubMed ID: 23962962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.